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Rational Speech Acts (RSA) paradigm as formalism

Speaker reasons about listener reasoning about speaker...

Speakers and listeners are conditional distributions

Bayesian Models 
of Reference
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L0(image|caption) =  S0(caption|image) · P(image) 

                                  ∑i’in imageS0(caption|i’) · P(i’)

S1(caption|image) =   L0(image|caption)a · P(caption)

                                  ∑c’in captions L0(image|c’)a · P(c’)
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Neural Image Captioning
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RSA for Natural Language Processing

S0:  a neural captioner p(caption|image)

Then the S1 does not require training on a dataset of referential captions

Utterance set: all combinations of words (up to some length)

See (Mao et al., 2016a, Vedantam et al., 2017) for applications to captioning
See: Dale and Reiter, 1995, Monroe and Potts, 2015, Andreas and Klein, 2016, Monroe et al., 2017 
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Intractable sum: ∑c’ in captions

S1(caption|image) = L0(image|caption)a · P(caption) / ( ∑c’in captions L0(image|c’)a · P(c’) )

The Issue of the Utterance Space



   What if we do pragmatics at each timestep?
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Pragmatics at the Level of Characters

! Let’s apply the incremental approach to a character RNN!

! Global number: 3060 = 4239115827521620351429443320100000000000000000000000000000000000000000000000000000000

! Local number: 30x60 = 1800

! (Advantageous even considering only captions with non-zero probability)
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Evaluation

● Is separately trained listener more likely to pick target given S0 or S1 captions? 

● This method does not require a dataset of pragmatically informative 
captions: just clusters of similar images
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Char S0 48.9 47.5

Char S1 68.0 65.9

Results

Word S0 57.6 53.4

Word S1 60.6 57.6

! Character-level is better than word-level!  

Model TS1   Accuracy TS2   Accuracy

! S1 is better than S0



The Bigger Picture

! Incremental pragmatics can yield global pragmatic effects

! Realistic utterance spaces are not a barrier to Bayesian pragmatics

! Bayesian pragmatics for natural language beyond referential image captioning





Incremental S1

S0(word | partial_cap, img) 

L0(img| partial_cap, word) =  S0(word | partial_cap, img)P(img) 

      ∑i’  S0(word | partial_cap, i’)P(i’) 

      

S1(word | partial_cap, img) = L0(img | partial_cap, word)aS0(word | partial_cap, img) 

          ∑w’ L0(image | partial_caption, w’)aS0(w’ | partial_cap, img)



Referential 

A good caption for an image is not just true, but also pragmatically informative

A pragmatically informative caption allows a listener to identify the target image.

B1 B2



Which image does this caption refer to? 

red bus

B1 B2



Which image does this caption refer to? 

red bus

B1 B2



Which image does this caption refer to? 

bus

B1 B2



Which image does this caption refer to? 

bus

?
B1 B2


