Lost in Machine Translation: A Method to Reduce Meaning Loss

The problem

I cut my finger \neq I cut my finger off

But state-of-the-art systems map both to a single sentence in French: Je me suis coupé le doigt.

Bayesian model of pragmatics

- The Rational Speech Acts (RSA) framework [1] models pragmatic inferences.
- E.g. the inference that Some apples are red means that not all are (because if all were, speaker would have said All apples are red)
- Let W be a set of states , and U be a set of possible utterances
- Given a state w, S_1 prefers utterances u which are good for S_0 but also communicate w to L_0

$S_0(u w)$	$\propto \llbracket u \rrbracket(w) \cdot P(u)$ (literal speaker)	
$ L_0(w u)$	$\propto \llbracket u \rrbracket(w) \cdot P(w)$ (literal listener)	
$ S_1(u w) $	$\propto S_0(u w) \cdot L_0(w u)$ (informative speaker)	

Reuben Cohn-Gordon | Noah Goodman | Stanford University

2019

Informative Translation

- RSA in the domain of translation: a source language sentences corresponds to a world state w. A target language sentence corresponds to a possible message u, which a translation model decodes from w.
- Intuition: S_1 tries to maximize the one-to-one nature of the mapping.
- For a set of target language sentences W and some $w \in W$, the S_1 utility says: pick the best translation for w according to S_0 which also allows L_0 to best guess the original sentence w.
- One version (S_1^{SNT-IP}) for explicitly selected W, one $(S_1^{SNT-CIP})$ for unbounded W (all sequences of words).

Examples

Evaluation

- Eval 1: Translate to target language with model. Translate back (with separate system). Do you get back what you started with? (distance measured in BLEU)
- Eval 2: On an aligned corpus, measure translation quality of S_1 vs. S_0 by BLEU score.

Figure: Scores for the non-pragmatic and pragmatic models, on 750 English-German WMT pairs.

Model and Inference

• A trained neural model $S_0^{WD}(wd|w,c)$ is a distribution over the next word given a source sentence and a partial translation. Likewise L_0^{WD} , but from target language to source. • We use pretrained neural transformer models [2]

• Because U and W are infinite, we need to approximate S_1 . We extend the approach of [3], with a model $S_1^{\text{SNT-CIP}}$, in terms of $S_1^{\text{WD-C}}$:

- $S_1^{ ext{WD-C}}(wd|w,c) \propto S_0^{ ext{WD}}(wd|w,c) \cdot$ $\Sigma_k(L_0^{\text{SNT}}(w|c+wd+k) \cdot S_0^{\text{SNT}}(k|w,c+wd)) \quad (1)$
- $S_1^{\text{SNT-CIP}}(u|w,c) = \prod_t S_1^{\text{WD-C}}(u[t]|w,c+u[t])$

Conclusions

• Meaning distinctions in the source language should be preserved in the target language. • An explicit utility function for informativity (as in S_1) is a simple solution to meaning loss in translation, which improves quality generally

References

[1] Michael C. Frank and Noah D. Goodman. "Predicting Pragmatic Reasoning in Language Games". In: Science 336.6084 (2012), p. 998. [2] Myle Ott et al. "fairseq: A Fast, Extensible Toolkit for Sequence Modeling". In: arXiv preprint arXiv:1904.01038 (2019). [3] Ramakrishna Vedantam et al. "Context-aware captions from context-agnostic supervision". In: Computer Vision and Pattern Recognition (CVPR). Vol. 3. 2017.