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Preface

Grice (1975) puts forward a view of linguistic meaning in which conversational agents enrich the semantic

interpretation of linguistic expressions by recourse to pragmatic reasoning about their interlocutors and world

knowledge. As a simple example, on hearing my friend tell me that she read some of War and Peace, I reason

that, had she read all of it, she would have said as much, and accordingly that she read only part.

It turns out that this perspective is well suited to a probabilistic formalization. In these terms, linguistic

meaning is fully characterized by a joint probability distribution P (W,U) between states of the world W

and linguistic expressions U . The Gricean perspective described above corresponds to a factoring of this

enormously complex distribution into a semantics JuK(w) : U → (W → {0, 1}), world knowledge P (W )

and a pair of agents which reason about each other on the assumption that both are cooperative and have

access to a commonly known semantics.

This third component, of back and forth reasoning between agents, originates in work in game-theory (Franke,

2009; Lewis, 1969) and has been formalized in probabilistic terms by a class of models often collectively

referred to as the Rational Speech Acts (RSA) framework (Frank and Goodman, 2012). By allowing for the

construction of models which explain in precise terms how Gricean pressures like informativity and relevance

interact with a semantics, this framework allows us to take an intuitive theory and explore its predictions

beyond the limits of intuition.

But it should be more than a theoretical tool. To the extent that its characterization of meaning is correct,

it should allow for the construction of computational systems capable of reproducing the dynamics of open-

domain natural language. For instance, on the assumption that humans produce language pragmatically, one

would expect systems which generate natural language to most faithfully reproduce human behavior when

aiming to be not only truthful, but also informative to a hypothetical interlocutor. Likewise, systems which

interpret language in a human-like way should perform best when they model language as being generated

by an informative speaker.

Despite this, standard approaches to many natural language processing (NLP) tasks, like image caption-

ing (Farhadi et al., 2010; Vinyals et al., 2015), translation (Brown et al., 1990; Bahdanau et al., 2014) and
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metaphor interpretation (Shutova et al., 2013), only incorporate pragmatic reasoning implicitly (in the sense

that a supervised model trained on human data may learn to replicate pragmatic behavior).

The approach of this dissertation is to take models which capture dynamics of pragmatic language use and

apply them to open-domain settings. In this respect, my work builds on research in this vein for referential

expression generation (Monroe and Potts, 2015; Andreas and Klein, 2016a), image captioning (Vedantam

et al., 2017) and instruction following (Fried et al., 2017), as well as work using neural networks as generative

models in Bayesian cognitive architectures (Wu et al., 2015; Liu et al., 2018).

The content of the dissertation divides into two parts. The first (chapter 2) focuses on the interpretation

of language (particularly non-literal language) using a model of non-literal language previously applied to

hyperbole and metaphor interpretation in a setting with a hand-specified and idealized semantics. Here,

the goal is to instantiate the same model, but with a semantics derived from a vector space model of word

meaning. In this setting, the model remains unchanged, but states are points in an abstract word embedding

space - a central computational linguistic representation of meaning (Mikolov et al., 2013; Pennington et al.,

2014). The core idea here is that points in the space can be viewed as a continuous analogue of possible

worlds, and that linear projections of a vector space are a natural way to represent the aspect of the world that

is relevant in a conversation.

The second part of the dissertation (chapters 3 and 4) focuses on the production of language, in settings where

the length of utterances (and consequently the set of all possible utterances) is unbounded. The core idea here

is that pragmatic reasoning can take place incrementally, that is, midway through the saying or hearing of an

utterance. This incremental approach is applied to neural language generation tasks, producing informative

image captions and translations.

The result of these investigations is far from a complete picture, but nevertheless a substantial step towards

Bayesian models of semantics and pragmatics which can handle the full richness of natural language, and

by doing so provide both explanatory models of meaning and computational systems for producing and

interpreting language.
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Chapter 1

Bayesian Models of Semantics and
Pragmatics

“...Now if you’re ready, Oysters dear,

We can begin to feed.”

“But not on us!” the Oysters cried,

Turning a little blue.

“After such kindness, that would be

A dismal thing to do!”

“The night is fine,” the Walrus said.

“Do you admire the view?”

Lewis Carroll, Through the Looking-Glass and

What Alice Found There

The meaning of an utterance is the information it communicates about the state of the world1. Some of this

information is closely linked to the form of the utterance itself. The night is fine, for instance, communicates

something about the weather. Other information, however, depends more significantly on the context of the

utterance. In the context in which the Walrus comments on the night weather, in response to the Oysters’

question about their fate, the fact that he eschews any denial carries a strong suggestion (both to the reader

and presumably the terrified Oysters) that he is planning to eat them2.

This information about the Walrus’ intention is clearly not “built in” to the Walrus’ utterance. For example,

saying The night is fine as a response to What would you like to eat? at a cocktail party would communicate

1Meaning is of course a very broad term — this is the definition that best suits the content of this dissertation.
2Thanks to Brooke Husic for the example.
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CHAPTER 1. BAYESIAN MODELS OF SEMANTICS AND PRAGMATICS 2

nothing about wanting to eat oysters. Rather, this particular meaning arises as a result both of the utterance,

and the context in which it is said.

The study of natural language meaning accordingly divides into semantics - what is built into a linguistic

expression - and pragmatics - what is communicated by the use of that expression in a particular context.

While tools originating in the study of programming languages and logics have been fruitfully applied in the

study of the semantics of natural language (Montague, 1973), pragmatic meaning has less clear counterparts

in mathematical logic and computer science3 and so poses a distinct challenge.

A core approach to understanding pragmatic meaning originates with Grice (1975), who proposes that the

assumption of cooperativity between conversational participants leads to inferences being drawn when this

assumption appears to be flouted. In the case of the Walrus, for instance, the flouting of the norm that

questions (Do you plan to eat us?) should be answered informatively and relevantly leads the hearer (or

reader) to find an explanation for the flouting, here that the true answer is one which the speaker prefers not

to give (Yes).

In recent years, an approach to pragmatic meaning which builds on Grice’s perspective, as well as the insight

of (Lewis, 1969) that conversation can be viewed as a cooperative game, has emerged within the setting

of Bayesian cognitive science (Tenenbaum et al., 2011). This approach, which is often referred to as the

Rational Speech Acts framework (RSA), or as probabilistic pragmatics, derives a speaker’s linguistic choices

and a listener’s inferences about these choices as the result of agents reasoning about their interlocutor, on

the basis of a shared semantics and an assumption of cooperativity.

This dissertation is an attempt to show how this probabilistic perspective on pragmatics can be integrated

with advances in natural language processing, where substantial progress is being made in tasks involving

linguistic meaning. The thesis motivating this work is that probabilistic models of pragmatics are ideally

positioned to bridge the gap between an appropriately general formal theory of meaning and the practical

concerns of natural language processing.

Bridging this gap is a two way street. One the one hand, integrating an explicit model of pragmatic behavior

into an NLP system yields an interpretable model in which semantic and pragmatic meaning can be properly

isolated. On the other hand, and as will be seen throughout this dissertation, the requirements of real-world

systems (unlimited potential utterances, continuous semantics) require conceptual advances leading to a better

understanding of the models themselves.

The goal of this chapter is to describe the probabilistic perspective on pragmatic meaning, taking the very

idealized setting of a reference game as a motivating example. This will serve as a basis for the main content

of the dissertation, of scaling these models to less idealized settings.

3That said, concerns very similar to what linguists conceive of as pragmatics arise in problems of coordinated action in systems with
distributed control. See for example (D’Andrea and Dullerud, 2003)
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Figure 1.1: U = {square, blue square}, W = {R1, R2}

1.1 Reference Games

An idealized instance of communication between two agents known as a reference game serves as a useful

example of the distinction between semantics and pragmatics. I begin by introducing a simple reference

game, a model which qualitatively captures the reasoning humans employ when engaging in such a game,

and then show how this example can be generalized to much richer instances of linguistic communication.

In a reference game, a speaker and listener see a set W of states4. The speaker is assigned one of these states

as their target, and aims to communicate which state this is to the listener. The speaker does so by choosing

an utterance from a set U of possible utterances. Figure 1.1 provides a concrete example.

Assuming that both the speaker and listener share a semantics, so that blue square can only refer to R2 while

square can refer to either, the most informative utterance for a speaker whose target is R2 is blue square.

A listener who assumes that the speaker acts informatively in this way can draw an inference on hearing

square. They can infer that R1 is the target state, since had R2 been the state, the speaker would have been

more likely to say the more informative utterance blue square. We say that the use of the expression square

carries the implicature that R1 is the target state.

We now consider how to formally model the reasoning process just described of the speaker and listener. First

of all, it is clear that an adherence to truth is not a sufficient requirement to derive either the behavior of the

informative speaker described above or of the listener who reasons about this speaker. A speaker who only

cares about producing true utterances will be equally inclined to say blue square or square when referring to

R2, since both are true. Likewise, a listener who only attends to semantics will be agnostic as to whether the

target state is R1 or R2 on hearing square, since that utterance is compatible with either.

As such, what is needed is a model which formalizes the process of reasoning about one’s interlocutor. The

idea to use the tools of game theory in this endeavor originates with Lewis (1969) and is developed by Franke

4Depending on the context, these are alternatively referred to as referents, or possible worlds. I use the term state to emphasize the
generality of the models presented here, but make use of these other terms when appropriate.
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Figure 1.2: An overview of the RSA framework. Speakers and listeners are conditional probability distribu-
tions between a set of utterance and a set of states.

(2009) among others. The family of models used in what follows was introduced by Frank and Goodman

(2012), and is often referred to as the Rational Speech Acts (RSA) framework.

1.1.1 A probabilistic perspective on reference games

RSA models are probabilistic, and view speakers and listeners as conditional probability distributions5.

Speakers are of the form P (u|w), distributions over which utterance u to say given a target state w, while

listeners are of the form P (w|u), distributions over the state w given a heard utterance u. PS(u) and PL(w)

represent prior distributions over utterances and states respectively. This is summarized in figure 1.2.

First consider a model of a listener L0 who only reasons about a semantics. For our purposes, a truth-valued

semantics amounts to a function mapping linguistic expressions u ∈ U to the set of states (or more generally

states) W (often referred to in the linguistics literature as worlds, a term inherited from modal logic) with

which u is compatible. This function is here represented in the form JuK(w) : U → W → {0, 1}, i.e. as a

relation between pairs of utterances and worlds6.

5A (discrete) distribution P (A) over a set A is the pair (A, f), where f is a function A → R, assigning each element of A a
real-valued weight between 0 and 1, such that

∑
a∈A f(a) = 1. A conditional distribution P (A|B) is a function B → Dist(A),

where Dist(A) is the set of all possible distributions on A. In other words, a conditional distribution takes (i.e. is conditioned on)
b ∈ B and returns a distribution over A.

6Note that J·K is curried: it first takes an utterance, and then returns a function which takes a state and returns a truth-value (here
0 or 1, rather than F or T ). This formulation aligns a truth-valued semantics with probabilistic generalizations, since a conditional
probability distribution P (U |W ) can be seen as taking an utterance u and returning a distribution over W , which itself amounts to a
function from states to real numbers between 0 and 1
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(1) L0(w|u) = JuK(w)·PL(w)∑
w′∈W JuK(w′)·PL(w′)

This model can be understood as having a prior belief PL(w) about the target state and, on hearing an

utterance u, updating this belief to exclude states incompatible with the semantics of u. Thus, on hearing

blue square, L0 is certain that the state is R2 (since L0(R2|blue square) = 1.0), but on hearing square, does

not place any more weight on R1 than it already had in its prior: L0(R1|square) = PL(R1) and

L0(R2|square) = PL(R2).

The goal is to design a model L1 which does prefer R1 on hearing square. To this end, we first define a

speaker S1 which, given a state w, prefers utterances u which convey w to L0, so that

S1(blue square|R2) > S1(square|R2) when there is equal prior preference for either utterance (i.e. when

PS(square) = PS(blue square). Conceptually, S1 is an agent who chooses among a set of actions (U ) given

a utility function7 T (u).

(2) T (u) = log(L0(w|u))

(3) S1(u|w) = eT (u))·PS(u)∑
u′∈U e

T (u))·PS(u′)

Here, the equation simplifies to S1(u|w) = L0(w|u)·PS(u)∑
u′∈U L0(w|u′)·PS(u′) , but expressing the utility explicitly is often

conceptually useful, particularly in more complex models.

This puts us in a position to define L1, capable of deriving the desired implicature by reasoning about what

state S1 must have had in order to have produced the heard utterance:

(4) L1(w|u) = S1(u|w)·PL(w)∑
w′∈W S1(u|w′)·PL(w′)

Note that RSA equations will often be presented only up to proportionally, since their normalizing term can

be recovered from context. For example, 4 would become L1(w|u) ∝ S1(u|w) · PL(w).

It will be useful to clearly distinguish the equations (1-4) from their interpretation8 in a concrete setting,

which provides particular sets U and W , a particular function J·K of type (U,W ) → {0, 1}, and particular

distributions PL(w) and PS(u).

For instance, one interpretation that models the reference game depicted in figure 1.1 is as follows:

• W : {R1, R2}

• U : {square, blue square}
7Note that here and throughout the dissertation, log is taken to be the natural logarithm.
8I use the word interpretation by analogy to the situation in mathematical logic, where a distinction is made between a formal

language and its interpretation, which (typically) provides concrete sets corresponding the various symbols in the language. Similarly,
an interpretation of the RSA equations provides sets and distributions corresponding to the relevant symbols, such as PL and J·K.
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• P (w) : {R1 : 0.5, R2 : 0.5 }

• P (u) : {square : 0.5, blue square : 0.5}

The obvious semantics is then:

JuK(w) 7→

0 u = blue square, w = R1

1 otherwise

Under this interpretation, S1 prefers the more informative utterance blue square over square when its target

referent is R2. As a consequence, L1 assigns more probability to R1 being the target state on hearing square,

although R2 is still a possibility: L1(R1|square) > L1(R2|square). In the RSA framework, this corresponds

to the calculation of an implicature.

In the work discussed in this dissertation, we will see very different examples of interpretations, involving,

among other things, infinite sets of utterances, and continuous state spaces. While these interpretations allow

for the application of these models of reference games to complex domains, the core dynamics of the models

often arise in simple interpretations, such as the above. For a striking example, see figure 2.4, which visualizes

two implicatures in a continuous setting.

Implementation Probabilistic programming languages like Church (Goodman et al., 2012) or WebPPL

(Goodman and Stuhlmüller, 2014) provide an easy way to prototype models of nested inference. RSA mod-

els can also be implemented in standard languages, which allows for more straightforward integration with

other NLP tools; most of the models considered in the dissertation are implemented in Python’s numerical

computation library NumPy, or Tensorflow.

1.1.2 Variations of the basic model

The L1 presented above is, more or less, the simplest possible model capable of the pragmatic reasoning

involved in the above example of a reference game. However, it is worth briefly discussing several variations

relevant to the work presented in the following chapters.

Higher recursion depth In principle, it is straightforward to define a speaker who reasons about L1, a

listener that reasons about that speaker, and so on. For more complex phenomena than the implicature

discussed above, such higher order agents may be necessary (see (Bergen et al., 2016)).

Taking this further, at infinite depth of nesting we obtain a fixed point, in the form of a speaker and listener

who make hard (non-probabilistic) choices of utterance and state respectively, at least in the case of the
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simplest RSA models.

If we view this fixed point as optimal behavior in some sense, it is natural to view models like L1 as ap-

proximations which reflect how real language users behave, who only reason up to a small depth of nesting

(Goodman and Stuhlmüller, 2013).

A literal speaker L1 grounds out in a literal listener L0. However, a comparable model could be defined

in terms of a literal speaker S0, in terms of which L0 is defined, and so on. In certain cases, it is useful to

use a model of this variety, particularly when integrating Bayesian pragmatics with a neural semantics which

takes the form of a conditional distribution over utterances given states (see chapter 4).

Utterance cost Another term often included in RSA models is utterance cost, used to represent preferences

or dispreferences for utterances, deriving among other factors from psycholinguistic or phonetic production

difficulty.

Cost can be represented by a function C(u) added (in log space) to the speaker’s utility, and acts as an

alternative to having a speaker prior:

(5) S1(u|w) = eln(L0(w|u))−C(u)∑
u′∈U e

ln(L0(w|u))−C(u)

Note that the presence of the exponential derives from the formulation of agents in Bayesian decision theory

as using the softmax (or Boltzmann) distribution over actions.

In the models I consider, no use of cost is made, since any effect of cost can be obtained through a change in

the speaker’s prior over utterances. For instance, rather than saying that the utterance blue square is costlier

than square, on account of its length, we can assign lower probability to blue square than square under PS .

Rationality The degree to which the speaker S1 cares about informativity can be modulated by a parameter

α (by default set to 1), included as follows9:

(6) S1(u|w) = eα·(ln(L0(w|u))−C(u))∑
u′∈U e

α·(ln(L0(w|u))−C(u))

As α tends to infinity, the speaker’s decision becomes increasingly categorical, putting all mass on exactly

one utterance, and the listener reasoning about such a speaker makes accordingly categorical inferences.

9In the interpretation of the softmax distribution in statistical mechanics, this parameter is designated −β and referred to as the
inverse temperature.
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Speaker knowledge In the current model, speaker agents Sn have complete knowledge of the state of the

world w. A relaxation of this assumption is that the speaker has uncertainty, represented as a distribution over

states, much like the listener. In this setting, the speaker’s aim might be to minimize the distance between

their distribution over states and the listener’s posterior distribution, as measured, for example by Kullback-

Leibler divergence. However, the right utility function may also be more complex; if a cooperative speaker

is very uncertain but suspects that their interlocutor is not, the speaker’s goal is probably not to reduce the

listener to the speaker’s state of uncertainty. Instead, the speaker may aim to minimize the listener’s expected

entropy. As such, the proper way to extend RSA models to situations involving incomplete knowledge on the

part of the speaker is an open question.

1.2 Reference games as models of natural language

The simple reference game described in section (1.1.1) serves as a way of thinking about language more

broadly. In communication between two agents10, both share some set of hypotheses about how the world

might be (a common ground) and undertake speech acts by uttering linguistic expressions which inform

their interlocutor about this world.11 Pragmatic reasoning takes place in light of a semantics which is also

commonly known to both participants.

One simple example relates to the existential quantifier some. In natural language, sentences like (7) often

seem to carry the additional meaning of not all, e.g. that John ate some but not all of the cookies. We refer to

this as an implicature of (7).

(7) John ate some of the cookies.

To account for this, we could either posit an operation in the grammar which changes the semantic form of

(7), such as in (Chierchia et al., 2008), or alternatively posit a Gricean explanation (Grice, 1975), as in (8):

(8) If the speaker meant to convey a world state in which John ate all of the cookies, she would have said

John ate all of the cookies.

The debate over whether and which implicatures are grammaticalized is complex (Potts et al., 2016). Gram-

matical accounts have the benefit of explaining embedded implicatures in a direct way: these are cases where

an implicated meaning is subsequently involved in the compositional semantics, as in John believes some of

10Little work in this paradigm has focused on multiparty communication, where a range of more complex dynamics emerge. For
example, while a single linguistic act in a two-party exchange involves just a speaker and a listener, in a three party setting, two parties
can either be directly addressed at once, or one party can be a bystander. Richer pragmatic reasoning ensues as a result, as discussed by
Schober and Clark (1989) among others.

11At least, this is one thing an agent may do - clearly there are cases where informative, let alone cooperative, behavior is not a
reasonable assumption.
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the students left, where it seems that some comes to mean not all before being the proposition whose meaning

it determines is input to believe, so that John believes that not all of the students left is the resulting meaning.

Gricean accounts, on the other hand, are able to handle the effects of context on implicatures. As an example,

suppose that a friend and I have just discovered that the cookies we made were poisonous (we are poor

bakers). Our main concern is whether another acquaintance, John, has been poisoned. In this case, I might

say (7) to my friend, even if John ate all, and in turn, my friend might not draw the not all implicature.

This suggests that the implicature is a function of what aspect of the world is relevant (see chapter 2 for

a discussion of how this can be modeled formally). The models discussed in this work take the Gricean

viewpoint as their basis, although I return to the issue of whether these approaches are truly complementary

in chapter 5.

To model the implicature in (7) with a Bayesian pragmatic model, first recall that the equations defining the

model do not themselves specify how we should interpret U and W . In particular, modeling this implicature

calls for viewing elements of U as speech acts. Among the set of sentences which can be uttered is (7).

Meanwhile W is a set of possible worlds which includes the worlds in which John ate only some and John

ate all of the cookies. A simple interpretation of L1 in this vein is given below, where the state 0 designates

the set of possible worlds in which John ate 0 cookies, and likewise for 1, 2 and 3. Note that each state here

is an equivalence class of worlds.

• P (w) : {0 : 1
4 , 1 : 1

4 , 2 : 1
4 , 3 : 1

4}

• P (u) : {John ate some of the cookies: 1
3 , John ate all of the cookies: 1

3 , John ate none of the cookies:
1
3}

We assume a semantics in which John ate all of the cookies is compatible only with w = 3, John ate some

of the cookies with w > 0 and John ate none of the cookies with w = 0. Then, hearing John ate some

of the cookies causes L1 to prefer the states in which John ate some but not all of the cookies (L1(w =

1|u = some)= L1(w = 2|u = some) = 4
9 > L1(w = 3|u = some) = 1

9 ). Note that in a model with a

rationality parameter α, as α increases, L1’s inference on hearing John ate some of the cookies tends towards

the conclusion that L0 would draw purely from the semantics on hearing John ate some but not all of the

cookies.

Recent work on probabilistic models of pragmatics has focused on expanding the framework from simple

implicatures like the above to richer phenomena, including vagueness (Lassiter and Goodman, 2017, 2013),

manner implicature (Bergen et al., 2016), embedded implicatures (Potts et al., 2016), focus effects (Bergen

and Goodman, 2015b), inferences drawn from questions (Hawkins et al., 2015) and figurative uses of lan-

guage (Kao et al., 2014b, a).

These extensions often make use of tools not only from probability theory and information theory, but also

from logic, in convenient ways. For example, the model of question (Hawkins et al., 2015) treats questions as
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partitions over possible worlds, and derives implicatures from the assumption that the asker aims to maximize

expected information gain. The model of figurative language (Kao et al., 2014b) makes use of uncertainty

over an implicit question under discussion to define a listener which infers the question under discussion

which best justifies a given utterance. The model of focus (Bergen and Goodman, 2015b) assumes that

communication takes place on a noisy channel, that the speaker aims to mitigate loss of important information

and that the listener accordingly draws inferences about the speaker’s knowledge. Because of the Bayesian

setting, it is straightforward to incorporate multiple sources of uncertainty, so that, for example, a listener

must reason not only about how the world is, but also what the semantics of the language is like (Bergen

et al., 2016). A similar joint inference drives the model of metaphor used in chapter 2.

The coverage of RSA A number of other proposals for modeling cooperative language use, in particular the

Iterated Best Response framework (Franke, 2009), exist. The focus on the Rational Speech Acts framework

in this dissertation is the result of two of its prominent features. The first that it is probabilistic - language

production and interpretation are represented by conditional probability distributions - and as a result, is very

amenable to integration with statistical models of semantics, a central theme of this dissertation. The second

is that the RSA framework has been applied to a wide and increasing range of pragmatic phenomena beyond

scalar implicatures, as discussed briefly above, and as such presents the best existing candidate for a general

framework in which to formalize pragmatic meaning.

1.2.1 A probabilistic conception of meaning

In the traditional approach to natural language semantics (Montague, 1973) inherited from logic (Field, 1972),

we think of the semantic meaning of an utterance u as the set of worlds, known as a proposition, that are

compatible with u. Typically this is obtained by mapping an utterance u to a corresponding logical formula

which in turn maps, under a semantics, to a proposition. This notion of semantic meaning does not depend

on context, e.g. the listener’s beliefs or the other utterances available to the speaker.

In the probabilistic setting, the semantic meaning of an utterance u admits a generalization: it is the posterior

distribution of the literal listener L0 given u. In other words, it is the belief that u induces on a listener who

reasons in terms of the semantics and a prior. Note that this is context dependent: the L0 posterior depends

on the prior PL. However, this dependence is bounded: if an utterance is incompatible with a state w under

the semantics, L0 will put no probability on it, no matter the prior. Moreover, the other utterances u′ ∈ U
available to a hypothetical speaker have no influence on L0(w|u). In what follows, we use the term semantic

meaning of u in this probabilistic sense, to refer to the posterior distribution of a listener reasoning about a

semantics who hears u12.
12We note that inferences made on the basis of contextual information are often included in the remit of pragmatics, but we reserve

that term for inferences deriving from Gricean reasoning.
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Note that the logical version of the semantic meaning of any u is a subset ofW (traditionally, a set of possible

worlds, which is a proposition), while the probabilistic version is a distribution overW , which is like a subset

of W with additional information about degrees of belief in each w ∈W .

One nice consequence of the probabilistic viewpoint is that pragmatic meaning takes a similar form to se-

mantic meaning: the pragmatic meaning of an utterance u is the posterior of a pragmatic listener, i.e. one like

L1 that reasons about an informative speaker (or a more sophisticated model, capable of carrying out more

complex inferences).

So under this probabilistic perspective, pragmatic and semantic meanings are objects of the same type, namely

distributions over W . While the semantic meaning depends only on J·K and PL, the pragmatic meaning

depends also on PS(U), and consequently on U . In plain language, the pragmatic meaning of an utterance

in context depends not only on what states are probable, and on the semantics, but on what other utterances

were available to the speaker.

A final important note is that this notion of meaning is abstract in the choice of W . In certain settings,

W could be as simple as a two element set, so that a meaning, in the probabilistic sense, is a Bernoulli

distribution. An example of this would be a reference game with two objects, or the meaning of the utterances

yes and no. However, in another setting,W could be a continuous space, describing, for example, the location

of a particle, or the state of a complex system. The same goes for U , which is finite in the application of

probabilistic pragmatics in chapter 2 and countably infinite in chapter 4. One could even imagine a setting

where “utterances” were vowels, and lived in a continuous space. As such, one of the themes emerging from

this dissertation is that the probabilistic view of semantic and pragmatic meaning unifies a diverse range of

phenomena, and is entirely compatible with logical approaches to meaning.

1.3 Applying models of pragmatics to real-world settings

The example of a probabilistic model of pragmatics in section 1.2 is a proof on concept, in the sense that it

exhibits a qualitative behavior (exhaustification) which appears in human language use. Indeed, many more

complex RSA models are similarly proofs of concept.

In an ideal world, however, we might envisage these models being used also as practical methods for calcu-

lating or producing implicatures in natural language. This would serve two purposes: allowing theoretical

insights to be put to use in computational tasks, and providing a means to validate theoretical models in

realistic settings. What would it take to achieve this goal? Unsurprisingly, a number of serious challenges

emerge, outlined below.

First of all, a speaker’s choice of utterance in the real world is not confined to a finite set of options. It is a

basic premise of linguistics that sentences are structured recursively, allowing for an unbounded number of
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possible utterances. While it is possible to represent these utterances, for example as sequences of words or

acoustic signals, there remains a question of what utterances are considered to be available alternatives in

a particular context (Katzir, 2007). Considering every sentence as a possible alternative is both cognitively

implausible and computationally intractable, as discussed in chapter 4.

Secondly, the contrived set of states, corresponding to referents, in the example in section 1.2 is too simple

to capture all but the most basic real-world inferences. How states of the world, or at least their cognitive

representations, should be treated is a question which extends far beyond linguistics alone, but at the very

least, a means of automatically obtaining a state space is needed.

Thirdly, it is unclear how we should obtain a semantics J·K. This is both a theoretical and a practical question.

Theoretically, it is necessary to decide what form the semantics should take, in particular whether it should

be truth-valued. Practically, there is the question of how it should be obtained in an automatic fashion from

data.

Fourthly, extensions are needed in order for an RSA listener model to be able to handle non-literal, vague,

ironic or presuppositional language (Kao et al., 2014a; Lassiter and Goodman, 2017; Qing et al., 2016),

speech acts like questions (Hawkins et al., 2015), commands, and implicatures which are embedded or involve

the maxim of matter (Potts et al., 2016; Bergen et al., 2016), to name just a few limitations of the basic model

outlined in sections 1.1.1 and 1.2.

Finally, even if we did have adequate interpretations of W and U , a semantics and a more sophisticated

probabilistic model, it would still be impossible to make predictions from the model without a strategy for

performing inference to obtain the posterior speaker or listener distribution, which may not be tractable to

compute exactly.

These are all obstacles in making the insights of models of pragmatics useful in applications which involve

natural language. They are also obstacles in validating these models in real world settings; presenting a model

in an idealized setting is all well and good, but does little to support the claim that the model captures human

behavior.

The project of this dissertation can be seen as moving on the cline of complexity from the simple case

of the reference game described in section 1.1.1 towards a fully open-domain setting. As such the aim is to

address, to some degree, each of the challenges (identifying an appropriate representation of states, generating

alternative utterances, obtaining a semantics, enriching the model, performing tractable inference) outlined

above.

In a fully open-domain setting, all of these challenges will need to be tackled at once. Thankfully however, it

is possible to consider tasks where only some of these problems need to be solved. In particular, certain tasks

involve a complex utterance space U but a simple state space W , while the opposite is true for others. Some

tasks involve a relatively simple model, while others require more sophistication.
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Figure 1.3

To see this, I now discuss a number of natural language processing (NLP) tasks involving pragmatic reason-

ing, and the respective challenges that the application of probabilistic models of pragmatics to them presents.

1.3.1 NLP tasks

Many NLP tasks take the form of conditional language generation, where the goal is to generate natural

language which expresses some input data. One example is image captioning, where the input data is an

image, and the desired output is a sentence describing that image. Another is translation, where the input data

is a source language sentence, with the goal of producing a target language sentence that translates it.

Due to advances in machine learning methods in recent years (LeCun et al., 2015), both of these tasks

can be performed quite well automatically (Karpathy and Fei-Fei, 2015; Bahdanau et al., 2014), by sys-

tems trained on large datasets of aligned data. Once trained, both take the form of conditional distributions,

P (caption|image) for image captioning and P (translation|sentence) for translation.

Generating complex utterances

Image captioning For image captioning, producing a truthful caption is an obvious desideratum. That is,

an image of a red bus should not be captioned with: There is a yellow bus. A further desideratum, however,

is that the caption be informative; This is a bus is under-informative, particularly if the goal is to distinguish

between an image of a red and a yellow bus, as shown in figure 1.3.

This leads to the task of unambiguous image captioning, where the goal is to accurately caption a target image

in a way which doesn’t refer to any of a set of distractor images. This amounts to playing a reference game

in the domain of image captioning, where the states are images and the utterances are sequences of words.

The task of unambiguous image captioning provides a setting where the set of statesW can be kept small, but

the set of utterances U is complex, including any natural language sentence. As such, this is a good domain in
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Figure 1.4: Many to one translation produced by a neural sequence to sequence model (SSNT
0 ) and one to

one translation produced by a neural model augmented with an informativity based utility at decoding time
(SSNT-IP

1 )

which to investigate the challenge of producing informative utterances by using an S1 model in a way which

does not require considering a large set of possible worlds.

The approach I propose is to exploit the sequential structure of utterances, by making pragmatically informa-

tive decisions not at the level of whole utterances, but rather at the level of individual words.

Image captioning is also a domain in which the semantics is not truth-valued (i.e. a relation between utter-

ances and states), but rather takes the form of a neurally learned conditional probability distribution. The

approach taken here is to treat this neural captioning model as a literal speaker S0, representing a conven-

tional association between images and captions, and to design a Bayesian pragmatic model from this starting

point.

Translation A similar production task to unambiguous image captioning arises in the domain of translation.

Given a target sentence and a set of distractors, the goal is to translate it into another language in a way which

does not amount to a translation of any of the distractors. Failure to do this results in “lossy” many-to-one

translations, where multiple sentences with distinct meanings in one language map to a single sentence in

another. An example is shown in figure 1.4. Here, the goal of being informative, imposed by S1, amounts

to preferring a one-to-one mapping from source to target language. In addition, translation offers a domain

where the set of states, themselves being sequences of words, can have rich structure.
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Interpreting abstract states

In AI and NLP tasks, it is common to learn mappings from language (as well as images) to vectors in an

abstract representation space. For example, vectors of images derived from the final layers of a convolutional

neural network tend to place conceptually similar images (like two different images of giraffes) close together

in the representation space even if they are far away in the raw pixel space.

In computational linguistic tasks, mapping words (and more recently phrases and sentences (Peters et al.,

2018; Devlin et al., 2018)) to vectors is common practice, as a way to provide semantic information useful

for tasks including translation (Bahdanau et al., 2014), named entity recognition (Lample et al., 2016), and

sentiment analysis (Dos Santos and Gatti, 2014).

One way to take advantage of these representations is to treat them as states of the world which a speaker

is trying to convey and a listener is trying to infer. That is, a speaker is assigned a vector w and chooses a

word which best conveys it to a listener. Correspondingly, a listener hears a word and infers what vector in

the space the speaker was trying to communicate.

Metaphor interpretation For example, consider the setting where U is a set of predicates, and the goal

of the speaker is to choose the predicate which best conveys the state of the predicated noun, denoted by a

vector in a word embedding space. In particular, these predicates are metaphorical (e.g. John is a shark, Time

is a river), so that the listener must jointly infer the state and a subspace about which the speaker cares to

communicate.

This task targets a different set of challenges to image captioning and translation. In particular, it provides a

good domain for addressing the challenge of enriching states beyond a small finite set W of entities, while

allowing for a relatively small set of utterances U .

One challenge that both metaphor interpretation and translation/captioning address is to provide a non-truth-

valued semantics. However, the approach here differs. For this task, the semantics comes from the geometry

of the word embedding space, rather than a neural S0.

Metaphor interpretation is also a domain where a more sophisticated model than L1 is useful; a model of

non-literal language proposed by Kao et al. (2014b) turns out to be adaptable to the task.

1.4 Summary of contents

In enriching idealized models of pragmatic reasoning to open-domain natural language, two main themes

emerge. First, that by moving from a discrete set of states to a continuous space of latent representations, we
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can benefit from the dynamics that models of pragmatic reasoning already exhibit, but also inherit the power

of modern statistical approaches to semantic representations.

Second, that a cognitively plausible and computationally tractable model of pragmatic reasoning should pro-

ceed incrementally. This applies not only to generation of captions and translations, but also to metaphor

interpretation, where the meanings of phrases and sentences are derivable from their parts. In a sense dis-

cussed in chapter 5.4, this amounts to a proposal for a compositional pragmatics.

The content of the dissertation divides accordingly. In chapter 2, I show how a state space W that is also a

vector space can be incorporated into a Bayesian model of pragmatics. I then apply one such model to the

task of metaphor interpretation.

The theoretical goal is first to show that models introduced to handle non-literal meaning have a broad ap-

plicability to predication and modification generally. The technical goal is to show that Bayesian models

of pragmatics make sense in a setting where W is continuous, and by means of approximate inference al-

gorithms, allow for tractable inference. The empirical goal is to show that the interpretations of metaphors

arising from an explicit model of pragmatic reasoning improve on non-pragmatic baselines, as measured by

human judgments.

In chapter 3, I introduce an incremental model of pragmatic reasoning and investigate the quantitative differ-

ences in its behavior to existing models. In chapter 4, I apply this incremental model to image captioning and

translation, and introduce methods to evaluate the behavior of the resulting systems.

The theoretical goal in these chapters is to show that a model of incremental pragmatic reasoning is able to

account for human behaviors out of reach to a model of reasoning based on entire utterances, in particular,

anticipatory implicatures (Sedivy, 2007) and certain types of over-informative behavior (Rubio-Fernández,

2016). The technical goal is to show that by reasoning incrementally, it is possible to circumvent the in-

tractability of inference in an infinite space of utterances. The empirical goal is to demonstrate that incremen-

tal reasoning gives rise to globally informative utterances and that this improves a system’s ability to produce

informative language.



Chapter 2

Pragmatics with a distributional
semantics

The work on metaphor interpretation discussed in this chapter is the product of joint work with Leon Bergen,

as yet unpublished. Parts of the prose of that paper appears in this chapter.

Word embeddings, which map words to vectors in a high dimensional space, are part of the standard tool set of

natural language processing (NLP), and are used in modern systems for translation (Bahdanau et al., 2014),

sentiment analysis (Dos Santos and Gatti, 2014), image captioning (Karpathy and Fei-Fei, 2015), named

entity recognition (Lample et al., 2016) and entailment detection (Bowman et al., 2015), among others.

Word embeddings present a very different perspective on meaning to the traditional approach of natural lan-

guage semantics, where sentences are represented as logical formulas with truth values given a set theoretical

model, and words are represented as lambda expressions which compose to form sentence type meanings.

By contrast, a word embedding is difficult to interpret, save for its relation to other embeddings; standard

embeddings tend to have the property that semantically similar words have embeddings which are close (in

cosine distance) to each other.

The focus of this chapter is to address the following question: is a vector space representation of word (or

indeed phrase and sentence) meaning compatible with the Gricean view of pragmatics? If it is, can we build

models of pragmatic production and interpretation based on word embeddings? My aim is to lay out what

this would look like in theory, and show that it is attainable in practice.

This is a desirable goal, since it offers a way to combine the dynamics of Bayesian pragmatic models, effective

in idealized domains, with practical systems for using language. It would not only provide a means to obtain

real-world systems which could reason pragmatically, but also a way to test Bayesian models of pragmatics

17
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on real world data.

2.1 Metaphor interpretation

As an NLP task involving word embeddings with which to investigate the use of pragmatic reasoning, I

consider metaphor interpretation.

Metaphor interpretation is an example of a problem which is both of interest in NLP, where practical solutions

involving word embeddings are common, and to linguistics (Lakoff and Johnson, 1980), philosophy (Black,

1955) and cognitive science (Rohrer, 2002). Viewed as an NLP task, the goal is for a computational system

to take a metaphorical expression and arrive at a representation of its meaning.

For simplicity, I focus on metaphorical prediction (as in Jane is a solider) and metaphorical modification (as

in fiery temper). In what follows, I refer to the predicated or modified noun phrase (Jane, temper) as the

target of the metaphor and the predicate or adjective (soldier, fiery) as the source (see (Lakoff and Johnson,

1980) for the more general sense of these terms).

A key property of metaphors is that only some aspects of the source are true of the target; if we know that

Jane is a journalist, then Jane is presumably not like a solider with respect to owning a gun, but rather with

respect to her ruthlessness or work ethic. A fiery temper is not fiery in the sense of having a high temperature

- it is not even clear what this would mean - but rather with respect to its intensity or volatility.

There are several reasons for choosing this particular task as a test case for pragmatic reasoning in a dis-

tributional setting. First, the application of word embeddings to the problem is an area of active research

(Shutova, 2016), where the rich lexical information present in the geometry of the representation space can

be exploited. Second, there is a Bayesian pragmatic model of metaphor, which has previously been fruitfully

applied in simple settings, see (Kao et al., 2014a). This model assumes that given a target word and an aspect

of the target that they wish to convey, the speaker’s task is to choose a source word. Meanwhile, the task of

the listener is to infer two things: what aspect (or aspects) of the source are and are not relevant, and what

the target is like with respect to those aspects. In the case of metaphorical modification, utterances are single

adjectives in the reference game, and states are states of the head noun. For predicative metaphors, utterances

are predicates and states are states of the noun corresponding to the subject. As an example, a listener may

hear solider predicated of man and infer the aspect ruthlessness, and that the person being predicated scores

highly along this aspect.

A third reason to choose this particular task is that the Bayesian pragmatic model of metaphor interpretation,

which I refer to as LQ
1 , is a richer model than the standard L1, and provides a good test case of a more complex

pragmatic reasoning than has previously been applied to an NLP task. By happy coincidence, it turns out that

this increase in model complexity results in a much simpler inference algorithm (see section 2.4).
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The generality of the task While metaphor may seem to be of fairly limited importance to the broader

project of building cognitively realistic and computationally useful models of language understanding, the

proposed model has surprisingly general applicability. This is a result of the view of metaphor interpretation

as a joint inference of relevant aspects and states of the predicated (modified) noun. From this perspective,

many cases of predication and modification not traditionally treated as metaphorical can be captured by

the model. As an example, when interpreting red bus, red watermelon, and red room, it seems as if each

target noun is red in a different aspect (with respect to its exterior, its interior, and some things it contains,

respectively). This line of argument is taken up in more detail in section 2.6.2.

Other views of metaphor On the other hand, the opposite criticism might also be leveled, that metaphor is

of too broad importance to be treated from the perspective of LQ
1 . Indeed, some accounts of metaphor view

it as a central cognitive process (Hofstadter and Sander, 2013; Lakoff and Johnson, 1980), concerning the

human ability to link different domains that possess similar structures. In this respect, it is perhaps useful

to note that the kind of metaphor of interest in this chapter is purely the linguistic phenomenon whereby an

utterance is only literally true with respect to some partitioning of the world, but where an interlocutor is

capable of inferring what this aspect is. We could think of this as metaphor in the sense of (Black, 1955),

rather than any more general sense of analogy or metaphor at issue in cognitive science.

2.1.1 Pragmatic reasoning for metaphor

For a given metaphor, only certain properties of the target are described by the source, and which these are

depend on the metaphor and the context. For instance, (9), said of a sleeping dog, could convey that it is

unresponsive, but said of a large alert dog, could convey that it is heavy.

(9) The dog is a rock.

While certain metaphors are conventional - comparing someone to a lion tends to connote bravery - examples

like (9) suggest that the interpretation of a metaphor is contextually dependent on what is known about the

target. Even if the majority of metaphors become conventionalized over time (see for example the change in

meaning of fool over time and the rarity of its original literal use), it is clear that humans are able to interpret

novel metaphors. This poses a challenge which a theory relying entirely on idiomatic conventions could not

resolve. In this regard, I concur with the view of MacWhinney and Fromm (2014), that “The fact that nearly

all uses of metaphorical collocations are at least partially conventionalized should not obscure the fact that

metaphorical language in general can be productive. ”

One pragmatic analysis of metaphor, inspired by Black (1955) and Grice (1975), posits that to interpret a

metaphor, a listener must infer, based both on prior knowledge and considerations of their interlocutor’s
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goals, both what aspect of the target is being described by the source, and what the target is like with respect

to that aspect.

The appeal of this view, as with Gricean explanations of language use more generally, is the ability to explain

the productivity and dependence on context of metaphor, in a way which takes into account an underlying

semantics (e.g. the conventional meanings of dog and rock).

I now introduce LQ
1 , a Bayesian model in the Rational Speech Acts framework which formalizes this process

of reasoning, and discuss its application to metaphor in a hand-constructed setting, before turning to its

integration with word embeddings for open-domain metaphor interpretation. The hope (which I show is

borne out) is that LQ
1 will harness the expressiveness of a vectorial semantics but with the ability to reason

pragmatically afforded by a Bayesian model.

2.1.2 A model of non-literal interpretation

LQ
1 can be understood as an extension of the model L1, and in turn S1, introduced in chapter 1.1.1. In L1,

a parameter was left implicit dictating which aspects of the world a speaker cares about conveying. For

instance, the listener who hears “I ate some of the cookies.” is modeled as drawing inferences about the

number of cookies eaten, but not about whether it is raining in Timbuktu.

In other words, if we think of the full state space W as all possible worlds, in any particular model, we are

partitioning W into cells, according to some question under discussion (QUD) (Roberts, 1996). For instance,

the question How many cookies did I eat? partitions worlds w ∈ W into cells according to the number of

cookies I ate predicate.

We can make this dependence the model on a particular partitioning of the world explicit by replacing S1

with SQ
1 . Here, δa=b is the delta function, equaling 1 if a = b, else 0.

(10) SQ
1 (u|w, q) ∝

∑
w′ δq(w)=q(w′) · L0(w

′|u) · PS(u)

Surjective1 functions q : W → A formalize the notion of a question under discussion. In previous RSA

literature, they have themselves been referred to as questions under discussion, although I opt for the term

projection which connects to the word vector setting I go on to discuss.

A simple example is as follows: suppose that W = A×B, where A = {Jane is hardworking, Jane is lazy}
and B = {Jane owns a gun, Jane doesn’t own a gun}, so that each w ∈W is a tuple (a, b) for a ∈ A, b ∈ B.

Then two projections, which we could call qwork−ethic and qgun−ownership, are defined as λ(x, y) : x and

λ(x, y) : y respectively. A third trivial projection is simply the identity function.

1A surjective function q : A→ B is such that for every element b of its range B, there is some element x ∈ A with q(a) = b.
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Fixing some such projection q, the goal of SQ
1 , as with S1, is to be informative, but now only up to the

partition induced by q. For instance, for q = qwork−ethic, S
Q
1 will prefer utterances which result in the

listener model L0 placing high weight on worlds which agree with the speaker’s world on the work ethic

dimension, regardless of the effect on the gun ownership dimension.

Likewise, a value of q which maps a world to all the worlds in which John ate exactly the same number of

cookies will result in SQ
1 being informative, but only up to the goal of conveying the number of cookies. The

SQ
1 may mislead the listener with respect to the weather in Timbuktu, for example, in the course of carrying

out their goal.

A listener who reasons about the projection Since q is an explicit variable on which SQ
1 depends, one can

create a listener LQ
1 which jointly reasons about the world w and the aspect of the world q which the speaker

wishes to communicate.

(11) LQ
1 (w, q|u) ∝ S

Q
1 (u|q, w) · PL(w) · PLQ(q)

LQ
1 jointly infers values for w and q. The key dynamic is that the listener may hear an utterance u and infer a

pair (w, q) where u is semantically incompatible with w (i.e. JuK(w) = 0) but where u conveys some aspect

of w as determined by q.

This is a direct consequence of the definition of SQ
1 , the model that LQ

1 reasons about, which is able to produce

literally false utterances. Note by contrast thatL1 will assign no probability to a statew which is incompatible

in the semantics with the utterance it receives. This follows from the fact that S1 has negative infinite utility

in saying an utterance u incompatible with w, because L0 would then assign no probability to w.

Because of this property, LQ
1 can be used as a model of non-literal language, such as hyperbole (Kao et al.,

2014b) and metaphor (Kao et al., 2014a), as I now discuss.

2.1.3 Applying LQ
1 to metaphor

We can model predicative metaphor using LQ
1 by framing it as the following communication game: a speaker

wishes to communicate what an entity (or possibly type of entity) is like and chooses a predicate to do so.

Conversely, a listener hears a predicate and updates their belief about what the predicated entity is like.

The reason the LQ
1 model is important here, as opposed to L1 is to address the literal falsity of metaphors.

John is a shark, for instance, if taken literally, would ascribe all properties of sharks to John. The intuition

behind using LQ
1 is that a listener, in interpreting a metaphor, jointly reasons about which properties of sharks

are relevant and what John is like with respect to those properties.
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LQ
1 can also model AN metaphors in a similar way. For instance, for a phrase like fiery temper, we say that

the goal of a listener is to decide what is true of the temper in question given that the speaker has modified it

with fiery.

Metaphors are commonly combined with generic language (Men are sharks), but I treat generic language, for

which separate work in the RSA framework exists (Tessler and Goodman, 2016), as an orthogonal issue.

Making concrete predictions To derive metaphor interpretations from LQ
1 , five things must be provided: a

set W of states, a set U of utterances, a set Q of projections, a prior PL representing the listener’s uncertainty

over W , and a semantics J·K. (Assume throughout that the priors PLQ over Q and PS over U are uniform,

unless otherwise specified.)

One possible interpretation, similar to what is provided by (Kao et al., 2014a), treats points in the state

space W as lists of truth values, each corresponding to a binary property. I refer to this as a set theoretic

interpretation of LQ
1 and describe how it works below. As discussed in 2.2, word vectors will be incorporated

into LQ
1 simply by changing the interpretation, but keeping the model itself the same.

Set theoretic interpretations of LQ
1 for metaphor Given a set of properties P , a state is a subset of P .

Using the example of John is a shark2, suppose P = {vicious, aquatic}, so that four states are possible:

John is both vicious and aquatic, only vicious, only aquatic, or neither. Equivalently, we can think of a state

as a list of truth-values, one for each property. For example, instead of writing w = {vicious}, we could

write (vicious = T, aquatic = F ), or just (T, F ).

Utterances are predicates, such as shark, although they need not be metaphorical; vicious could also be a

predicate. Projections are functionsW → P(W ) which map states to the set of states agreeing on a particular

property or set of properties. For example, qvicious maps {vicious} to {{vicious, aquatic}, {vicious}}, the

set of states which agree with {vicious} on the vicious property but may differ on the aquatic property. If we

think of states as lists of truth-values, a projection is a function which drops some elements of the list. For

instance, qvicious = (λ(x, y) : x).

An extremely minimal example of a set theoretic interpretation of LQ
1 is as follows:

• PL = {(vicious = T, aquatic = T ) : 0.075,

(vicious = T, aquatic = F ) : 0.675,

(vicious = F, aquatic = T ) : 0.025,

(vicious = F, aquatic = F ) : 0.225}

• U = {shark, silence}
2Granted, this usage of shark is somewhat conventionalized. The reader may substitute this predicate for a metaphor of their choosing

if they prefer.
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Figure 2.1: Figure showing the posterior distribution of LQ
1 on hearing shark, when swimmner is the other

possible utterance, and vicious and aquatic are the QUDs. v and n abbreviate the Boolean variables vicious
and aquatic respectively.

• Q = {qvicious(λ(x, y) : x), qaquatic(λ(x, y) : y)}

The results of LQ
1 hearing shark are shown in figure 2.1. Note that a semantics J·K is assumed in which

shark is compatible only with (vicious, aquatic), and silence is compatible with every state. Also note that

the projections map each tuple to its value at a single property. In theory, for larger n-tuples of properties,

a projection could map to multiple properties, representing a speaker who wishes to communicate multiple

aspects of the state w. I return to this point in section 2.6.4.

The key fact to observe about LQ
1 in this example is that the prior belief that John is not aquatic leads LQ

1 to

conclude that the speaker cares about conveying the viciousness dimension (i.e. projection qvicious), and that

John is vicious. In this respect, LQ
1 qualitatively differs from L1: it can hear an utterance u and infer a world

w which is not compatible with u in the semantics.

Importantly however, LQ
1 can do more than simply using prior knowledge to interpret literally false statements

in a flexible way. It is also capable of reasoning about alternative utterances like L1: for instance, suppose we

add a third property, quickness, so that shark is compatible only with (vicious = T, aquatic = T, quick = T ),

and also add a third utterance, hummingbird, compatible with only (vicious = F, aquatic = T, quick = T ).

In this second example, when LQ
1 hears shark, it infers that John is more likely vicious than quick. This is

because a speaker who wanted to communicate that John is vicious would only be able to use the utterance

shark, whereas a speaker who wanted to communicate that John is quick would be able to choose between

either shark or hummingbird. The utterance shark is therefore more likely to have been produced by the

speaker trying to communicate John’s viciousness.

We can also marginalize out the world variable by summing over it, to obtain a marginal posterior distribution

over projections in Q. This tells us which projection is most likely, given that the listener heard shark.

Similarly, we can obtain a marginal posterior over states in W .
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With the probabilistic notion of meaning introduced in chapter 1.2.1 in mind, we can say that the posterior

distribution of L0 over W on hearing a metaphor captures its literal meaning, while the marginal posterior

distribution of LQ
1 over W captures its full, metaphorical meaning. These two meanings are objects of the

same type, which allows them to be directly compared. In the case of this example they differ in that the

literal interpretation places no probability on John not being aquatic, while the pragmatic meaning does.

Given hand-selected utterances and states, as well as projection functions and a semantics, LQ
1 makes predic-

tions which qualitatively reflect a Gricean story: on hearing a metaphor like John is a shark, a listener has a

prior belief that only certain properties of sharks pertain to John, and jointly reasons about which aspects of

John the speaker wishes to communicate and what John is like.

In this regard, the model displays qualitative behavior that appears to capture human metaphor interpretation

well (Kao et al., 2014a), but to evaluate on arbitrary predicative metaphors, a hand-supplied semantics is

required. This severely restricts the utility of the model as a computational system to provide interpretations

of metaphors. It also makes evaluation of its predictions difficult (though possible through a crowd sourced

semantics (Kao et al., 2014a)).

This isn’t an inherent problem with the LQ
1 model, so much as with current interpretation, which requires

a number of elements difficult to supply other than in a manual fashion. If these elements could instead

be supplied in an automatic way, we would be able to apply LQ
1 to arbitrary predicative metaphors. I now

introduce word embeddings, and propose a way to use them as a computationally obtained semantics for LQ
1 .

2.2 Word embeddings

A word embedding E is a mapping from words to points in a high-dimensional vector space3. By dimension-

ality reduction of a co-occurrence matrix (Pennington et al., 2014), or by extracting the weights of a statistical

model (Mikolov et al., 2013; Peters et al., 2018; Devlin et al., 2018), embeddings can be obtained which are

useful for downstream tasks (Dai and Le, 2015; Radford et al., 2018; Chen et al., 2016; He et al., 2017).

Insofar as they improve performance when used as a starting point for downstream tasks, it would seem that

embeddings map words to vectors which capture semantic information. While it is difficult to decode this

information explicitly, for instance by producing a basis of the vector space corresponding to concepts that

compose word meanings, it has been observed that the geometry of the space has compelling properties with

respect to word meanings.

For instance, in well-trained embeddings, human-judged semantic similarity of a pair of words a and b cor-

responds to a metric, such as cosine distance, between the vectors −→a and
−→
b .

3A vector space is a set equipped with structure which allows elements to be added together, and multiplied by scalars. See Axler
(1997) for a rigorous definition.
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Metaphor is an obvious candidate for the use of word embeddings: a wide variety of attempts have been

made to leverage the information inherent in pre-trained word vectors for the detection, interpretation and

paraphrase of metaphor (see (Shutova, 2016) for an overview of proposed systems).

2.2.1 Connecting word embeddings to models of pragmatics

The question now is how to use word embeddings in the context of a communication game, in particular

the one described above for metaphor. The key here is to interpret states of the target as points in the word

embedding space. From this perspective, for a given predicative metaphor (say John is a shark), every point

in the word embedding space corresponds to a way John could be.

The goal of the speaker is to choose a source word in order to convey a position in the space to the listener,

and the goal of the listener is to infer what this position is. In this sense, a spatial reference game is being

played (Golland et al., 2010), in an abstract word embedding space.

For AN metaphors, a similar approach can be taken. To interpret the AN phrase fiery temper, a listener has

prior uncertainty about what point in the space best describes the temper in question, and updates their beliefs

on the basis of the “utterance” fiery.

The closest work to this perspective is (Kintsch, 2000), which proposes a single scheme for literal and

metaphorical predication in a vector space setting.

Recalling the probabilistic notion of meaning introduced in chapter 1.2.1, we can say that the meaning of a

metaphor, from this perspective, is a distribution over points in the vector space that a word embedding maps

to (which word embedding we use is a hyperparameter of the model, but we consider it fixed for the purpose

of this discussion). For example, we can say that the meaning of temper, and of fiery temper, are then both

distributions over points in the word embedding space.

Note that word embedding spaces do not come equipped with interpretable dimensions4. That is to say, it is

not that case that each dimension of the space corresponds to a property, let alone a property of John. This

raises the question of what it means to treat points in the word embedding space as states.

However, by using cosine distance (or another metric) we can still make sense of a vector in the space

representing the state of John. For instance, a given state represents John being dependable, clever or tall to

the extent that its cosine distance to
−−−−−−−→
dependable,

−−−−→
clever or

−→
tall is low.

Of course, this is a crude representation of meaning at best. There is no distinction between words with

clearly different types, such as verbs, adverbs and proper nouns, and no notion of truth. It is not clear what

information the distance between many pairs of words, e.g. idealism and of, conveys.

4While the co-occurrence matrix that GLoVe is drawn from does have interpretable dimensions - each is a word, this is not the case
once the dimensionality is reduced.
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As such, we should view a word embedding under this interpretation of states as a rough, but useful repre-

sentation of meaning, which has enough structure to be used for the task at hand.

I now give a concrete example of a vectorial interpretation of an RSA model, namely LQ
1 . For reasons

discussed in section 2.4, the introduction of inference over projections at the level of the pragmatic listener,

ostensibly adding additional complexity to L1, turns out to simplify the inference procedure substantially,

and to provide results which are simpler to interpret.

2.3 A vectorial interpretation of LQ
1

The set-theoretic interpretation discussed in chapter 1 of LQ
1 takes states w ∈ W to be sets of properties

describing the source of the given metaphor, and a semantics to be a function U → (W → {0, 1}).

We now introduce a vectorial interpretation of LQ
1 . Importantly, this requires no modification to equations

(10, 11). As in the example presented in section 2.1.2, U is a set of adjectives. The crucial difference is that

the state space W is now not just a set, but a vector space determined by a word embedding E : U →W , so

that elements −→w ∈W are vectors.

Note that this generalization is mathematically natural, since the set-theoretic interpretation of LQ
1 can be

viewed as a special case of the vectorial interpretation, for a vector space over the Boolean field (rather than

the real field). That is, consider −→w as a vector with entries 0s and 1s, or T and F , dictating the presence or

absence of each property p ∈ P . From this perspective, it turns out that the only change made in introducing

word embeddings is to move to a vector space over the real field, and to introduce a new semantics, as

discussed below.

2.3.1 The listener’s prior

In the set-theoretic interpretation of LQ1 , with W finite, a discrete prior PL over W sufficed. In the present

case, whereW is necessarily infinite (ranging continuously over real-valued vectors), a multivariate spherical

Gaussian distribution is used, which can be parametrized by a vector µ for the mean and a single scalar σ

(the value of every diagonal entry of the covariance matrix). The prior over projections PLQ is taken to be

uniform.

(12) PL(w) = PN (w|µ = E(target), σ = σ1)

The multidimensional Gaussian distribution weights most heavily those points nearest to its mean. By setting

the mean of the prior as E(target) (where target is, for example, temper in the metaphor fiery temper),
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the model encodes the listener’s assumption that the meaning the speaker wishes to communicate is in the

neighborhood of the source noun. σ1 is a hyperparameter of the model, representing the degree of uncertainty

the listener has, and consequently, their willingness to update their beliefs.

2.3.2 The semantics

A word embedding space has no explicit representation of truth. That is to say, while we can compare the

similarity of a noun and an adjective according to a variety of metrics, we do not have a means of categorically

determining the compatibility of that adjective and noun.

As far as our model is concerned, this is not a problem since the definition of L0 in (11) requires only that

the semantics J·K be a function U → (W → R). We can define such a function as follows, with σ2 as a

hyperparameter, and u the metaphorical adjective or source:

(13) JuK(w) = PN (E(u)|µ = w, σ = σ2)

The result of this definition is that the value of JuK(w) is a real number which decreases with the Euclidean

distance between u and w. As with the definition of the prior in (12), the semantics introduces a hyperparam-

eter, namely σ2. JuK(w) decreases with σ2.

Note the analogy between a truth-conditional semantics and this probabilistic one: in the former, JuK is

effectively a set of worlds, so that JuK(w) iff w ∈ JuK. In the latter, JuK is a distribution, so that JuK(w) is the

mass placed on w by JuK.

2.3.3 The literal listener

As before, the literal listener is defined as in (14):

(14) L0(w|u) ∝ JuK(w) · PL(w)

Substituting in the definitions of the prior and semantics, this gives us (15):

(15) L0(w|u) ∝ PN (w|µ = E(u), σ = σ2) · PN (w|µ = E(target), σ = σ1)

To give an intuition for the behavior of L0 in the vectorial interpretation, figure 2.2 depicts the effect of

hearing shark (denoted as the vector (1,1)) given a prior centered at man (denoted as (0,0)). The dimen-

sions correspond to the two properties describing the state of the target used in the comparable set-theoretic

interpretation of The man is a shark introduced in section 2.1.3.
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Figure 2.2: Illustration of literal listener L0 given The man is a shark, with −−→man = (0,0) and
−−−→
shark = (1,1).

L0’s prior is centered at −−→man, and is updated towards
−−−→
shark.

2.3.4 Projections

Finally, a notion of a projection function q that is defined on a vector space, and a set Q of such projections,

is needed.

It has been argued (Pennington et al., 2014) that word embeddings such as GLoVe exhibit a degree of linear

structure, in the sense that for various quadruples of words (A,B,C,D), such that A is to B as C is to D, the

corresponding pretrained vectors approximately satisfy the equation
−→
A −−→B =

−→
C −−→D , where

−→
A is the word

vector corresponding to the word A5. For instance, the nearest word vector by cosine distance to the point

(
−−→
king−−−→man +−−−−→woman) in the Word2Vec embedding space is −−−→queen.

For this reason, the natural implementation of a projection in a vector space is as a linear projection, parametrized

by some hyperplane, which maps from the full space to a lower dimensional subspace. Geometrically, it can

be thought of as dropping a line from an input vector −→w at a right angle onto a vector (or hyperplane) −→u ,

capturing the degree to which −→w extends along −→v , and ignoring orthogonal dimensions. See figure 2.3 for a

two dimensional example.

In the more general multidimensional case, given a hyperplane in our space we can obtain a function mapping

points in the space to new positions, derived by dropping them perpendicularly onto the hyperplane. This

projection is a linear transform to a subspace of the original vector space.

5But see, for example, (Schluter, 2018) for limitations of this perspective.
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Figure 2.3: In this hand-constructed 2D example, vectors for
−−−−→
soldier and

−−−−−−→
predator are mapped onto sub-

spaces given by
−−−−−−−→
endurance and

−−−−−−−−−→
ruthlessness.

Mathematically, linear projections are the natural analogue of the projection functions used in the set-theoretic

interpretation of LQ
1 ; when viewed as vectors in a vector space over the Boolean field, projection functions

are precisely linear projections.

What set of linear projections Q should we choose? In the set-theoretic interpretation, Q was simply the set

of all one-dimensional projections, or equivalently, projections onto each of the standard basis vectors. In the

word embedding case, however, the basis vectors of a word embedding E have no simple interpretation as

properties, since, in a distributional setting, the axes of a world state vector do not neatly correspond to its

attributes.

Instead, we have to find some other subspaces on which to project. To obtain a set Q of projections, we first

note that since the denotations of words are vectors in W , any word parametrizes a linear projection q. For

instance, we can think of the word vicious as parameterizing a viciousness projection, which measures how

far the denotations of all other points in the space fall along
−−−−→
vicious.

In practice, I choose Q as a set of gradable adjectives, so that the projection of a noun n onto −→v amounts to

asking: to what extent is n v?

2.3.5 The model as a whole

Putting all this together, we have a model in which a metaphor is interpreted as a distribution over points

in a word embedding space, obtained by starting with a prior centered at the target (e.g. man) and moving

towards the target (e.g. shark), but only along certain subspaces. Which subspaces these are, and in what

direction one moves along them, is determined by reasoning about what an informative speaker would have

been likely to have said, given any particular pair of subspace and world.
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Figure 2.4: Heatmaps visualizing the inferred LQ
1 marginal posterior over worlds given fish (left) and shark

(right), with U = {man, shark, fish}, hand-chosen denotations overlaid, and σ1 = 5.0, σ2 = 0.5.

It is useful to visualize this process with a two-dimensional example. Figure 2.4 provides a visualization of

the LQ
1 posterior in a simple 2D case corresponding to the example used in section 2.1.3. Here, the semantics

is again hand-chosen, with exactly the same denotations for each word and the same sets of utterances U

and projections Q, but W is a continuous space. Brighter regions of the heatmap correspond to regions with

greater probability mass. The listener’s prior is a Gaussian ball around man, so the result of saying fish (shown

in the left hand heatmap) is a shift of probability mass towards the vector
−−→
fish. However, more mass can be

seen below
−−→
fish than above. This is because LQ

1 has inferred that had a point above
−−→
fish been the state that

the speaker intended to communicate, shark would have been a preferable utterance. This can be understood

as the computation of a scalar implicature, but in a continuous space.

Looking at the right hand heatmap, the model has shifted weight towards shark, but additionally has its

probability density spread with higher variance along the x axis than the y axis. The reason for this is that LQ
1

has drawn an inference that vicious, the projection corresponding to variation along the y axis, is the relevant

one, and that for this reason, it is relatively likely that the speaker is not intending to communicate states with

high values on the x axis. Again, this is precisely the inference drawn by the set-theoretic interpretation of

LQ
1 , but now in a continuous space.

Questions under discussion and linear projections The use of linear projections to model the ignoring of

certain features mirrors intuitions observed elsewhere in the cognitive science and natural language process-

ing literature. For instance, Kintsch (2000) notes:

“Computing a meaning always involves activating context-appropriate features and inhibiting or

deactivating inappropriate features.”

A comparable point is made about adjective-noun (AN) composition by Grefenstette (2013), which resembles

the intuition motivating LQ
1 quite closely:
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“In turn, through composition with its argument, I expect the function for such an adjective

to strengthen the properties that characterise it in the representation of the object it takes as

argument...When I apply “angry” to “dog” the vector for the compound “angry dog” should

contain some of the information found in the vector for “dog”. But this vector should also have

higher values for the basis weights of “fighting”, “aggressive” and “mean”, and correspondingly

lower values for the basis weights of “passive”, “peaceful”, “loves”.”

2.4 Inference

The LQ
1 model, when instantiated in the setting of word vectors, poses a problem for inference. The standard

method of enumerating all possible outcomes is clearly not viable at L0 when W is infinite. The problem

becomes yet more complicated at LQ
1 , where a joint inference between a discrete set Q and an infinite W

takes place.

Either analytic or approximate methods are required. In practice, a mix of the two is used; the L0 and S1

posteriors can be calculated analytically, while LQ
1 requires the development of an approximate inference

algorithm.

For reasons of efficiency, I only consider projections along a vector, rather than a larger subspace. This means

that projections correspond to single adjectives (although see section 2.6.4 for a discussion of the benefits of

multidimensional projections).

I now describe this algorithm in parts, working up from the L0.

2.4.1 L0

Intuitively, the vectorial interpretation of L0 amounts to the process shown in figure 2.2, where a ball, cor-

responding to the prior, is moved in the direction of the point corresponding to the received utterance. To

calculate L0 analytically, we make use of Gaussian conjugacy. When the prior PL is defined as in Equa-

tion 12, and the semantic interpretation is defined as in Equation 13, then conjugacy implies that the listener

posterior is given by:

(16) L0(w|u) = PN (w|µ =
σ2
1σ

2
2

σ2
1+σ

2
2
· (E(target)

σ2
1

+ E(u)
σ2
2
), σ =

σ2
1σ

2
2

σ2
1+σ

2
2
)

2.4.2 S1
Q

The speaker is defined by Equation 10, which in the continuous case can be rewritten as:
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(17) SQ1 (u|w, q) ∝
∫
w′
δq(w)=q(w′) · L0(w

′|u)

This integral is computing the marginal probability of wq , the projection of world w onto QUD vector q.

From Equation 16, L0(·|u) is a normally distributed random variable, and therefore projection of this random

variable onto a linear subspace is also normally distributed, providing a closed-form solution to S1.

2.4.3 LQ
1

The L1 posterior is a joint distribution over one continuous and one discrete random variable. Because of

the linear structure of the problem, it is possible to devise a near-exact inference algorithm for the marginal

distribution over Q, derived as follows:

L1(q|u)

=

∫
w

L1(w, q|u)

=
1

K
PLQ(q)

∫
w

PL(w)S
Q
1 (u|w, q)

=
1

K
PLQ(q)

∫
w

PL(wq, w
⊥)SQ1 (u|wq, q)

=
1

K
PLQ(q)

∫
w

PL(wq)PL(w
⊥)SQ1 (u|wq, q)

=
1

K
PLQ(q)

∫
w⊥∈Q⊥

PL(w
⊥)

∫
wq∈Q

PL(wq)S
Q
1 (u|wq, q)

=
1

K
PLQ(q)

∫
wq∈Q

PL(wq)S
Q
1 (u|wq, q)

I verify the correctness of this algorithm in the 2 dimensional case by comparison to the exact posterior,

which is numerically derivable in 2 dimensions (by discretization of the continuous space).

Here K is a normalizing constant, w, q ∈ Rn, and wq is the projection of w onto the vector q. Q is the

subspace of Rn spanned by the vector q, and Q⊥ is the orthogonal complement of Q. The vector w⊥ is the

projection of vector w onto the subspace Q⊥. The final equation is a one-dimensional integral, and can be

computed using a discrete approximation. The constantK can be found from the constraint
∑
q L1(q|u) = 1.
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2.4.4 Implementation Details

Implementing this algorithm requires vectorization of the code. This refers to the standard practice in ma-

chine learning models of avoiding loops and making use of matrix operations which can be calculated more

efficiently and benefit from GPU speed up. In particular, the loop at the SQ1 over utterances can be vectorized.

The model was implemented both in Tensorflow and NumPy. The motivation for the former was the ability to

make use of inference algorithms which require gradients to be calculated automatically (such as Hamiltonian

Monte Carlo and Variational Inference) - however, as it turned out, the LQ
1 inference algorithm does not

require this, since the problem reduces to a one dimensional integral, as shown in the previous section.

2.5 Evaluating the model of metaphor interpretation

In order to inspect the behavior ofLQ
1 , a method for transforming its posterior distribution into an interpretable

prediction is needed. Points w ∈W are difficult to interpret on their own, but projections q ∈ Q on the other

hand correspond directly to adjectives representing the aspect of the subject that the speaker wishes to convey.

For this reason, I use the marginal posterior over Q to generate predictions from the model. In particular, the

marginal posterior over Q generates a ranking on the set of adjectives used to supply the projections, so that

the best interpretations of a metaphor can be taken to be the highest ranked adjectives under this distribution.

I now discuss initial attempts to measure the quality of these predictions. While predictions from LQ
1 appear

to be qualitatively reasonable, we encountered difficulty outperforming a baseline model which uses word

vectors but no explicit model of pragmatics.

Random baseline The random baseline model is defined as follows: for a given metaphor of the form (a

n), we take the mean of the embeddings of the adjective a and noun n. We then randomly select two adjectives

from the top 100 hundred adjectives nearest to this mean and use these as the baseline interpretations for the

metaphor. The mean (which is a weighted sum) is used in light of the effectiveness of vector addition in

deriving representations of phrasal and sentence meanings from constituent words, see (Mitchell and Lapata,

2010; Grefenstette, 2013; Socher et al., 2013). Cosine distance is a standard metric of similarity used for

word embeddings (Pennington et al., 2014).

Stronger baseline The stronger baseline, rather than choosing randomly from the 100 nearest adjectives,

selects the top 2 nearest.
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Figure 2.5: An item in the experiment. Item order, and in-item order of the 4 adjectives from LQ
1 and baseline

models is randomized.

Experiment Tsvetkov et al. (2014) provides a corpus of ∼800 AN metaphors, gathered by human annota-

tors, of which I select ∼100 of the least frequent by bigram count6 for the experiment, in order to filter out

conventionalized metaphors. Our full set of 109 metaphors is shown in figure 2.6.

In the experiment, each participant is shown a series of 12 metaphors, selected randomly from the total

109. For each metaphor, they are asked to rate on a slider four adjectives representing interpretations of the

metaphor, of which two are selected by LQ
1 and two from a baseline model. Figure 2.6 shows the results from

a comparison of LQ
1 and the random baseline described above. An example is shown in figure 2.5.

The experiment was run on Mechanical Turk, with 99 participants, all of whom are native English speakers.

Participants who failed to follow instructions on a test item were excluded, leaving 60 participants (although

this affects results very little, which remain significant without the exclusion).

2.5.1 LQ
1 hyperparameters

The 300 dimensional GloVe vectors trained on Wikipedia 2014 and Gigaword 5 are used as the word em-

bedding E. For each AN metaphor (a n), U is the a set of 101 alternative utterances consisting of a and

100 of the nearest adjectives (by cosine distance) to n. These adjectives are chosen from the set of the 1425

6N-grams data from the Corpus of Contemporary American English (Davies, 2011).
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L
Q
1 adjectives random adjectives metaphor

undistorted, faceless wolfish, pitiless cut-throat competition
euphoric, giddy despondent, chagrined deflated emotions
greater, moral alarming, impoverished deeper poverty

traditional, fresh homemade, organizational corporate pie
imminent, speculative recessionary, substantial economic meltdown

evil, suicidal angry, nasty blind hate
stellar, untold humiliating, regional economic heap

unbearable, mental afflicted, worse debilitating poverty
bipartisan, anti political, affordable economic prescription
quiet, idyllic important, everlasting deserted friendship

beautiful, particular fearful, sincere blue feelings
unproductive, crummy ungodly, undoable backbreaking rent

dangerous, possible alleged, guilty criminal path
cynical, vulgar lustful, insatiable dirty desires

difficult, obvious preliminary, analytical deep analysis
easy, traditional possible, social economic pie

successive, miserable fiscal, brutal crushing unemployment
wrong, new warmer, appropriate cold justice

refreshing, copious unopened, divine bottled passion
awash, treacherous undulating, unprecedented crisscrossed chaos
jubilant, galvanized buoyant, wobbly deflated pride
desirable, modest residential, fragile durable middle-class
amusing, cynical nasty, afraid biting look

recent, likely slight, annual economic rise
enduring, rich afflicted, global deep poverty

gifted, renowned illiterate, national blind elite
federal, necessary southern, aggressive economic force

cyclical, breakneck zippy, sluggish economic laggard
immense, intellectual overall, analogous economic sphere
precarious, creaking adequate, prolonged collapsing health

stale, unrealistic wobbly, metaphorical deflated meaning
optimal, budgetary potential, adequate balanced growth

entrepreneurial, greater agile, possible economic mobility
wicked, dishonest virtuous, righteous dirty deeds
cultural, genuine astonishing, parliamentary democratic vitality
rewarding, excess dry, lavish draining expense
vibrant, medieval worse, grotesque economic tapestry

relentless, debilitating battered, periodic crushing cycle
conquering, immense embarrassing, overwhelming crushing difficulty
academic, practical advanced, recent economic medicine
pessimistic, bleak worried, serious clouded future
ambitious, vibrant strategic, postwar economic revitalization

accidental, divergent unspoken, intolerable colliding contradiction
appalling, wretched alarming, inhuman dehumanizing poverty

overblown, depressing bizarre, depressed deflated joke
alone, unclear male, additional dead money

enduring, evident homogeneous, big deep inequality
supreme, founding constitutional, socialist dissolved time

longstanding, unshakeable baneful, underlying deep-rooted belief
ambitious, innovative outspoken, risky aggressive program
unchecked, continual phenomenal, zippy breakneck expansion
rampant, worsening acute, fatal chronic poverty
immediate, immense atomic, illegal economic destruction

unable, wrong heavy, anxious broken hope
internal, sustained neurological, apparent economic muscle
inherent, legitimate ancient, glaring cultural impediment
ideological, fiscal philosophical, administrative academic gap

good, higher poor, efficient durable class
worsening, prevalent adverse, global acute poverty

successive, heartbreaking aggravated, gigantic crushing neglect
unrelenting, magnificent windy, torrid blazing desolation

moral, secular parliamentary, flexible civic fabric
interactive, competitive nonlinear, real dynamic company

principled, definite lasting, flexible clear-cut solution
subsidized, costly senior, insolvent burdened service

unsustainable, voluminous macroeconomic, insufficient ballooning expenditure
lonely, idyllic monogamous, featureless deserted relationships

disoriented, contorted unexplored, undulating choked gullies
conquering, heartbreaking appalling, gigantic crushing misery

dramatic, depressing recent, greater economic slide
quiet, nondescript forlorn, patterned blue obscurity

foreseeable, pessimistic windless, worrisome cloudy prospect
pervasive, debilitating addictive, corporate corrosive corruption
widespread, alarming abject, escalating acute ignorance
flamboyant, humorous multicolored, garish colorful personality

certain, other painful, huge deep rank
minor, whole good, numerous broken melody

optimistic, generous national, ambitious compassionate budget
provocative, unflattering memorable, charming colorful remark

feudal, authoritarian great, aristocratic backward tradition
civil, disastrous sluggish, allied economic battle

consequent, structural apparent, freshwater ecological collapse
terrible, oppressive absolute, innate crushing ignorance

potential, tremendous ready, mild big weakness
unbearable, nagging escalating, playful crippling awkwardness
impoverished, prone parallel, important backward area
scientific, theoretical potential, advanced economic field
economic, ongoing bilateral, unprecedented deepening crisis
succinct, emphatic goddamned, possible clear-cut answer
spiritual, immense otherworldly, heavy deep solitude
intelligent, creative narcissistic, aggressive dynamic personality

naive, suicidal poor, bald blind optimism
usual, strange wet, unlikely cold appearance

enduring, emotional aesthetic, newfound cultural strength
bleak, glum ghastly, enduring dim reminder

bittersweet, unimaginable salty, baked delicious agony
crippling, debilitating afflicted, nationwide crushing hunger

productive, scarce active, hydrochloric concentrated poverty
romantic, pure youthful, pale dark passion
aware, direct administrative, unable clear responsibility

pessimistic, bleak enticing, heightened dimmed prospect
longstanding, generational ingrown, hallowed deep-rooted tradition

sleazy, seedy new, formal dodgy bar
sacred, holy yellow, kindred burning soul

timeless, immortal rejuvenated, mellow ageless rhythms
serene, otherworldly overgrown, lyrical desolate beauty

disastrous, debilitating fierce, avenging crushing effect
wasteful, unsustainable lifeless, tough bloated spending

thriving, vibrant pigtailed, unraveled blossoming industry

Figure 2.6: The 109 metaphors used in the experiment, and corresponding LQ
1 proposals and random baseline,

plotted against mean rating given to that metaphor under these two models.
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adjectives with concreteness ranking > 3.0 in the concreteness corpus of Brysbaert et al. (2014), to exclude

abstract nouns.

Similarly, the set Q of projections correspond to the hundred closest adjectives to the mean of the subject and

predicate (the method of adjective choice in the baseline model), and PLQ is taken to be a uniform distribution

over Q.

By tuning on a validation set of hand-selected metaphors, σ1 = σ2 = 0.1 are chosen as the best values of

these hyperparameters. The adjectives corresponding to the two projections with highest marginal posterior

mass under LQ
1 are selected as the interpretations provided from the model in the experiment.

2.5.2 Results

The results of the comparison between LQ
1 and the random baseline, shown in Figure 2.6, were analyzed

using mixed-effects models with random slopes and intercepts for items and participants. Participants rated

four interpretations for each metaphor: the best and second-best interpretations, as output by each of the

target and baseline models. Participants rated the target interpretations significantly higher than the baseline

interpretations (β=13.8, t=5.3, p< 10−7) in a combined analysis. The results were similar when the best

target interpretations were compared to the best baseline interpretations (β=16.4, t=4.8, p< 10−5) and when

the second-best interpretations were compared (β=11.1, t=3.2, p<0.005).

Failure to beat a stronger baseline We also try comparing LQ
1 with the strong baseline, where the top 2

nearest adjectives to the mean of the adjective and noun are the baseline proposal. In this case, a significant

preference for the baseline model was found. This means that there is little to no evidence that pragmatic

reasoning, as embodied by the LQ
1 model, is valuable for this task, since the random baseline is very weak

indeed.

2.6 Discussion

The system for metaphor interpretation proposed in this chapter forms part of a more general conviction that

the way forward for cognitively accurate models of natural language interpretation and production should

involve an empirically learned semantics (which may be in part, or entirely non-truth conditional) and an

explicit model of interagent reasoning.

The approach taken here has been to use a distributional semantics in concert with a Bayesian model of

pragmatic reasoning, to tackle the task of metaphor interpretation. The core steps which allowed this were to

take points in a vector space to represent possible states of a predicated or modified target noun, to use linear
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projections to represent aspects of this state, and to develop an inference algorithm capable of approximating

the posterior distribution ofLQ
1 . This demonstrates that a continuous state space is not an impossible challenge

for an RSA model.

I take the compatibility of Gricean pragmatics and vector space models of meaning to be a separate question

to whether the latter is an accurate or even effective representation of meaning. That said, the compatibility

of a Gricean theory of pragmatics with a non-truth-valued semantics shows that a truth-valued semantics is

not essential to the Gricean enterprise - a useful technical point.

As well as being a computational linguistic tool, the fact that LQ
1 can handle arbitrary AN metaphors allows

for more thorough empirical investigation of the utility of pragmatic reasoning in performing natural language

tasks.

I conclude the chapter with a discussion of the place of the proposed metaphor interpretation system in

the more general goal of pragmatic reasoning about natural language. First, I outline some of the implicit

assumptions the system relies on and how they can be relaxed where needed (section 2.6.1). I then discuss

the possibility that, while proposed as a system for metaphor interpretation, LQ
1 serves to capture adjectival

modification and predication more generally (section 2.6.2). Extending the argument, I note that LQ
1 ’s process

of AN phrase interpretation, which begins (in the prior) with the meaning of a noun, and results (in the

posterior) in the meaning of a noun phrase, is suggestively compositional; I hypothesize that this is indeed a

form of compositionality for word vectors, a desirable practical and theoretical goal (section 2.6.3). Finally, I

outline key directions of future work to develop the system, towards a fully open-domain model of language

interpretation (section 2.6.4).

2.6.1 Assumptions of the model

There are several assumptions about word embeddings that LQ
1 relies on which are approximations at best.

The first comes from the fact that the vectorial interpretation of LQ
1 uses a word embedding as a semantics.

This assumes that a word embedding, specifically GLoVe, contains only semantic information.

In practice, however, there is every reason to suspect that a model such as GLoVe or Word2Vec, which is

trained on real corpora, learns to incorporate both semantic and pragmatic information.

As a concrete example, the co-occurrence of shark and man arising from instances of the metaphor “The man

is a shark.” in GloVe’s training data, influences the position of the vectors for shark and man. Thus, in some

sense, GLoVE is already representing information which it is the task of LQ
1 to infer. For this reason, it would

seem that pragmatics is being double counted by the model, in the sense that the semantics already encodes

pragmatic information.
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To avoid this double counting, the ideal solution is to obtain a word embedding which only represents se-

mantic information. Bayesian modeling offers a principled way to do this: infer a semantics (in the form of

a word embedding) from observations of real world data on the assumption that these data are produced by

pragmatic reasoning as modeled by LQ
1 . In other words, the solution to infer what a semantics must be like

such that, when used as the basis of a model of pragmatic reasoning, it would produce language as observed

in corpora.

One way to approach this challenging inference problem is to back-propagate through an RSA model based

on observations of pragmatically generated data. This approach is taken by Monroe and Potts (2015), where

a semantics and pragmatics are jointly learned.

In the present case, the idea would be to simultaneously update the values of the word embeddings while

drawing inference about the meanings of particular phrases or sentences. Aside from working out the con-

ceptual details much more concretely, the barrier to such an approach is the speed of the inference algorithm;

in order to train on a large scale dataset, the process of deriving pragmatic interpretations would have to be

implemented in a significantly faster way. This challenge presents an important avenue for future work.

Non-linearity The use of linear projections in the vectorial interpretations of LQ
1 and SQ

1 exploits the assumed

linear structure of the embedding space (Pennington et al., 2014). This linearity is approximate at best (see

(Linzen, 2016; Finley et al., 2017) for potential caveats). A natural question, therefore, is whether a non-

linear notion of projection is more suitable; the difficulty here is that linear projections are both simple to

compute and easy to generate from the vectors of arbitrary words.

With respect to the discussion above, of inferring a suitable semantic representation, another approach is

available. By using a pragmatic model which makes the assumption of linearity, it would be possible to back

out a word embedding which is linear in the desired sense by design.

2.6.2 The scope of the model

Prima facie, it seems that some predications and modifications are metaphorical, while others are literal. As

far as LQ
1 is concerned, metaphorical meaning is distinguished from literal meaning by involving a projection

which determines some aspects of the world which the speaker cares to communicate. Viewed from this

perspective, metaphorical language is arguably very pervasive; in fact, there is a case to be made that the

mechanism of LQ
1 should be taken as an account for modification and predication generally.

Subsectivity and metaphor An argument of this form has been made in the context of intersective and

non-intersective adjectives.

In truth-conditional approaches to semantics, intersective adjectives are defined by the following property: for
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an intersective adjective A, if Ax is the set of things which are A, and for a noun N , if Nx is the set of things

in the extension of that noun, then the intersection of these two sets is the extension of [AN ]. For example,

if one believes that red is an intersective adjective, then the set of red apples would be the intersection of the

set of red things and the set of apples.

By contrast, a non-intersective adjective is one like skillful, where a skillful cook might be skillful in a

different way to a skillful dancer. As such, if one were to posit an intersective analysis, on which the extension

skillfulx consisted of the set of skillful things, it would trigger the unwanted entailment that a skillful dancer

who was a cook was also a skillful cook. Instead, one can say that a non-intersective adjective is a function,

taking a noun and returning a new extension.

The intuition connecting intersectivity to metaphor is this: non-intersective adjectives modify their noun only

with respect to certain aspects, much like how metaphorical modification requires the identification of the

aspect of the noun that is being modified. As such, I put forward the following hypothesis: metaphorical and

non-intersective modification can both be modeled by the joint inference over projections in LQ
1 . Exploring

this hypothesis, by applying the model to non-intersective adjective modification, is an avenue of future work.

The extent of metaphor The question of the extent of metaphor closely parallels the discussion raised

early in the field of truth-conditional semantics, of the extent of non-intersectivity.

Quine, for instance notes that “a red apple is red on the outside while a pink grapefruit is pink on the inside”

(Lahav, 1989). Though not framed in these terms by Quine, this suggests that an intersective treatment may

not be appropriate for color modifiers, since the way in which a given object is a certain color depends on

the object, much in the same way as skillfulness is object dependent. That is, an intersective treatment would

force us to say that a pink grapefruit is also a pink object, rather than merely being pink for a grapefruit.

Partee draws an explicit connection between this observation and metaphorical modification (see (Lahav,

1989)), by suggesting that cases like red apple could be part of the same phenomenon as flat note, flat beer

and flat tire, where each is flat in a different way. This leads to a second hypothesis, that all adjectival

modification is metaphorical, in the sense of metaphor specified by LQ
1 .

To the extent that they are true, the consequence of these two hypotheses is that the mechanism used in LQ
1

has general purpose applicability to adjectival modification.

2.6.3 Compositional distributional semantics

Distributional semantics models rich lexical information in a way which is demonstrably useful for NLP

tasks. However, it offers no canonical method of composition7, by which word meanings (represented as

7Or rather, it does in the form of the matrix-vector product, but this is linear and for that reason seems too weak a form of composition.
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vectors) can be assembled into meanings for phrases or sentences.

This is a stark contrast with traditional approaches in semantics (Montague, 1973), which place relatively

little information in lexical items, but offer a rich theory of composition, by way of the simply-typed lambda

calculus (Loader, 1998).

In the past, attempts have been made to create a compositional distributional theory, either through a direct

analogue of lambda calculus (Coecke et al., 2010) or through statistical models which respect a structure

determined by the syntax (Socher et al., 2013). This is a desideratum for both NLP applications and linguistic

theory (Baroni et al., 2014), since it provides a modular and principled way to reduce the complexity of a

sentence meanings to its simpler constituents.

As an alternative to these proposals, Bayesian models of language interpretation offer a notion of composition

which, in the context of a vectorial interpretation, is also distributional.8

The application of LQ
1 to metaphorical AN phrase interpretation provides an example: here, the posterior

distribution of LQ
1 (or more precisely, the marginal posterior over W ) represents the meaning of an AN

phrase. This meaning is determined by the head noun, which parametrizes the LQ
1 prior, and a received

utterance (the adjective), on the basis of which LQ
1 updates the prior to the posterior. To put it another way,

the modifying effect of the metaphorical adjective on the noun here is represented by the update from the LQ
1

prior to posterior.

The case of LQ
1 can be generalized in two ways, to obtain a much more general claim about composition.

First, in light of the discussion of the generality of LQ
1 as a model of modification in section 2.6.2, a general

approach to adjective noun phrase composition can be proposed:

(18) If the meaning of [NOUN] is the prior of a listener model, then the meaning of [ADJECTIVE NOUN]

is the posterior of a listener model (LQ
1 or another appropriate model) after receiving [ADJECTIVE].

The second generalization is from adjective noun phrases to composition more broadly, between any head and

modifier, in a recursive manner. To obtain a meaning for unpredictable fiery temper, the posterior distribution

obtained from fiery temper can subsequently be used as a prior, to be updated by unpredictable. Since the

compositional process proposed here can be performed recursively, it is possible to obtain the meaning of

any phrase or sentence as a distribution over a word embedding space, by iteratively composing the subtrees

of the sentence in the normal fashion. In other words, the move from L1 prior to posterior (the process of

Bayesian inference) can be understood as the function by which an head and modifier combine, generalizing

the mechanism of function application used in a truth-conditional setting.

8The term distributional is unfortunate here, since it bears no relation to the probability distribution over U or W used in the models
themselves.
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This compositional distributional proposal differs from (Coecke et al., 2010) in returning a distribution over

points in the word embedding space as the meaning for a phrase, rather than a single point. It also differs,

more substantially, by incorporating pragmatic reasoning at each stage of the composition. Note, however,

that an analogous version of this proposal, using L0 instead of LQ
1 , would not involve Gricean pragmatic

reasoning (but see chapter (5) for a discussion of the relation of this proposal for compositional distributional

semantics to incremental pragmatic reasoning as introduced in chapter 3).

2.6.4 Future work

I now discuss a number of possible extensions of the system proposed in this chapter, to the end of a general

model of pragmatic reasoning for natural language.

Validation of the model While the model predictions, for example those shown in section 2.5 appear qual-

itatively promising, what is needed in future work is a clear demonstration of the ability of LQ
1 to outperform

baseline models which use a vectorial semantics but have no explicit pragmatic reasoning. Current evalua-

tions, as discussed in section 2.5, have shown a human judgment preference for a baseline model.

Multidimensional projections The notion of projection, either in the set-theoretic or vectorial interpreta-

tion, maps a state of the world to a single aspect or dimension of that state. In principle, the projection can

map to multiple dimensions. In the vectorial case, this amounts to a projection onto a plane (two dimensions)

or a hyperplane (n > 2 dimensions).

This would allow the model to interpret a metaphor as carrying information along several dimensions of

meaning at once. An interesting hypothesis is that metaphors are useful over and above literal language

precisely because they enable a speaker to communicate along many dimensions simultaneously. This could

be investigated for a model with multidimensional projections. In fact, the model proposed in this chapter is

equipped to reason about multidimensional subspaces - the difficulty is that inference in this setting becomes

much more expensive, because of the discretization of what currently is a single-dimensional subspace, but

would become multidimensional. However, performing efficient quadrature for a low-dimensional integral is

not, in theory, a prohibitively difficult task.

Metaphor production In some sense, SQ
1 can be taken as a model of metaphor production. However,

a more accurate model is one which is capable of reasoning about a listener who is capable of metaphor

interpretation. Such a model, SQ2 , would be defined in terms of LQ
1 , and would produce utterances either in

terms of a state w and projection q, or a state w alone (by marginalizing over q).
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The importance of such a model is to investigate the contexts in which metaphorical language is useful, to

underlie a system for metaphor production, and to provide a different form of testable prediction to LQ
1 .

Sentence embeddings Vectorial representations of words in context, and sentences, are an increasingly

prevalent NLP tool in light of recent advances (Devlin et al., 2018; Peters et al., 2018).

A direction of future work which these representations make possible relates to the dependence of a metaphor’s

interpretation on context which, though a key feature of LQ
1 , is never directly exploited. That is, LQ

1 predicts

that the interpretation of a metaphor should depend heavily on prior information about the target noun. For

instance, example (9), The dog is a rock, has different meanings when said of a sleeping or heavy dog.

Contextualized word embeddings, where the vector corresponding to a word depends on its local context,

provide a straightforward way to incorporate context, simply by taking the listener’s prior to be a context

dependent word vector, rather than a word vector in isolation.

Complex utterances One of the advantages of working with word vectors was the simplification of the

utterance space U , to a relatively small finite set, placing the focus on the complexity of the state space W .

The focus of chapters 3 and 4 is on more complex utterances spaces. Therefore, in chapter 5, I discuss the

natural third step: combining the approaches introduced in this dissertation to form a single model with both

a complex state space and a complex utterance space.



Chapter 3

Incremental Pragmatics

The model of incremental pragmatics discussed in this chapter is the product of joint work with Chris Potts

and Noah Goodman, as published in (Cohn-Gordon et al., 2018b). Parts of the prose of that paper appears in

this chapter.

In the applications of models of pragmatics considered so far, the utterances u ∈ U have been atomic, in

the sense of having no internal structure. In the example discussed in chapter 1.1.1, U consisted of two

hand-chosen labels, while in the case of metaphor interpretation discussed in chapter 2.3, U consisted of an

automatically chosen set of adjectives, viewed as “utterances” in the context of a noun they predicated.

By contrast, expressions1 in natural languages have rich structure - indeed, this structure is a central object

of study in linguistics. Consequently, the following questions arise when applying models of pragmatic

reasoning to natural language:

• If, as a result of being recursively generated, the utterance set U consists of an infinite number of

expressions, how do the models of pragmatics considered so far (S1 and L1) fare in such a setting? (the

question of unbounded utterances)

• How do we explain inferences made during the interpretation of an utterance? (the question of antici-

patory implicatures)

In answering both of these questions, it turns out to be useful to proceed incrementally, choosing each suc-

cessive word pragmatically, rather than reasoning pragmatically on the level of the sentence as a whole. The

1Following chapter 1, we distinguish between expressions, which are linguistic objects, and utterances, which really designate
speech acts, i.e. the action of uttering an expression. In theory, an utterance could be more general, corresponding to any action bearing
semiotic significance, such as hand gestures, or even clothing choice, but in this dissertation the utterances correspond to the production
of linguistic expressions. This distinction is particularly important in the present chapter, since an utterance, depending on whether a
speaker model is global or incremental, may be a word or a sentence.

43
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focus of this chapter is to propose just such a model of incremental pragmatic reasoning, which takes place

at the level of words (or other segments) during the interpretation or production of an utterance. A speaker

model which proceeds in this incremental way is capable of handling an unbounded set of utterances (a point

which is developed in the context of natural language processing systems for image captioning and translation

in chapter 4). Meanwhile, an incrementally pragmatic listener can draw implicatures before the completion

of an utterance. I now describe these issues of production and interpretation in more detail, showing the

difficulties they pose for the standard RSA model.

The problem with unbounded utterances The set of sentences available in a natural language is not finite2.

Instead, recursively applicable rules generate an infinite set of sentences of potentially unbounded length

(Chomsky, 1957). Suppose we attempt to use L0, S1, and L1, or more complex variants of the same, as

models of pragmatic reasoning in such a setting. Mathematically speaking, these models are still well defined.

A literal listener L0, armed with a compositional semantics, can handle any one of a recursively generated

set of expressions. For S1 given a state w, it makes sense to ask what utterance is most informative (even out

of an infinite alternative set U ) with respect to a literal listener, and for L1, to ask what state S1 intended to

communicate.

However, actually calculating the posterior distribution of S1 (i.e. performing inference) is now intractable.

The reason is simply that S1 includes a normalizing constant with a sum over U . Moreover, finding the

maximum a posteriori utterance (that is, the utterance with the highest probability under the S1 posterior)

would require a search through every one of an infinite set. Since L1 is defined in terms of S1, it inherits this

intractability.

This poses a challenge both for applying Bayesian models of pragmatics to natural language processing tasks

and for their plausibility as a cognitive model of informative language production and interpretation.

The problem with anticipatory implicatures

Sedivy (2007) provides compelling empirical evidence that humans draw pragmatic inferences partway

through utterances. For instance, when shown a scene with a tall cup, a tall pitcher, a short cup, and a

key, a listener who hears “Give me the tall–” will fixate on the tall cup before the utterance is complete.

Intuitively, the reasoning the listener performs is clear: on hearing “Give me the tall–”, the listener reasons

that, had the speaker intended to refer to the pitcher, no modifier would have been needed (given the absence

of a short pitcher), while if the tall cup had been the referent, tall would have been an informative modifier.

As a consequence, the listener infers that the tall cup is the most likely intended referent.

A model which reasons about whole utterances like L1 is incapable of deriving this inference, simply because

it requires a full utterance, not a partial one.

2Or at least, the size of the set grows exponentially with the maximum sentence length.
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Figure 3.1: Two similar buses. An informative caption in this context must be very specific.

Subsampling an infinite utterance set One approach to the problem of unbounded utterances is to approxi-

mate U with a finite set of samples from U . For instance, a speaker might first identify a number of low cost

semantically allowable utterances from an infinite U , and then treat this set as U for the purpose of pragmatic

reasoning. Previous attempts to apply pragmatic reasoning to an infinite utterance space, for the purpose of

designing NLP systems, have employed this method (Andreas and Klein, 2016b; Mao et al., 2016).

One problem with this approach is that it relies on the assumption that there is a reasonable probability of

an utterance which is low cost and truthful also being pragmatically informative. As an example of where

this assumption fails, consider a reference game in which the goal is to refer to B1 in the context of B2, as

shown in figure 3.1. In this case, a description which is informative in the context, like The 73 bus or The bus

showing its left hand side, might well be costly enough that it is very unlikely to be one of a sampled subset

of U selected for reasons other than informativity. The consequence is that it would then not be an utterance

S1 could produce.

Subsampling also fails to provide an explanation of anticipatory implicatures, since it still takes the approach

of treating utterances as atomic units.

Reasoning incrementally I propose a different approach. Rather than sampling a set of full expressions from

U and then performing pragmatics, the speaker performs pragmatics while sampling an expression. Similarly,

a listener performs pragmatics partway through interpreting an expression.

This approach relies on the assumption that the utterance set consists of expressions with recursive structure,

so that the distribution over utterances can be decomposed into a product of simpler distributions. A simple

decomposition (corresponding to a practically useful but linguistically unmotivated right branching recursive

structure) is the one used in language models for NLP, where the distribution over word n of an utterance

depends on words 1 to (n − 1). This is the case discussed in this chapter, although see section 3.4 for a

discussion of how this approach could be extended to a structure which respected syntactic constitutents, like

a probabilistic context free grammar (PCFG).
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The advantage of this incremental approach is two fold. Firstly, it avoids the problem of an infinite utterance

space, by reasoning about alternatives at the level of words, or subword segments, of which only a finite

number exist. Secondly, it provides a means to calculate pragmatic inferences on the basis of an incomplete

utterance, like “Give me the tall–”. As such, it constitutes a more cognitively plausible theory of pragmatic

reasoning than a global model, while preserving the core approach.

Aside from its usefulness as an NLP tool (the focus of chapter 4), it is important to consider the plausibility

of incremental pragmatics as a linguistic theory: do humans in fact make use of this sort of incremental

reasoning, either in production or interpretation? What predictions would an incremental theory of pragmatics

make differently to a global one? What empirical evidence can be brought to bear on this claim?

The rest of the chapter is structured as follows. I first introduce an incremental model of pragmatics in

formal detail. I then discuss its mathematical difference to a non-incremental, or global model. I then explain

two natural language phenomena, anticipatory implicatures and cross linguistic variation in over-informative

language (Rubio-Fernández, 2016), as an effect of this difference, in order to motivate incremental pragmatic

reasoning as a linguistic theory. The first of these requires a model of language interpretation, while the

second requires a model of language production. As such this pair of case studies serves to demonstrate

both aspects of incremental pragmatics. As a further exploration, I present a comparison of the behavior

of an incremental pragmatic speaker against human language production. Finally, I discuss several of the

theoretical implications of incremental pragmatics, as relates to compositionality and a theory of alternatives.

3.1 Incremental models

Standard RSA models are global in the sense that the pragmatic reasoning is defined over complete utterances.

Speakers are conditional distributions of the form P (u|w), while listeners are of the form P (w|u), for an

utterance u and state w.

To avoid confusion, in this chapter and the next, I refer to global speakers and listeners with the superscript

SNT for sentence, e.g. LSNT
0 .

The core idea of incremental pragmatics is to consider models of speakers which choose the next word u

given a state w and a context c in the form of a previous sequence of words, and models of listeners which

draw an inference about w given c and u. Precisely as in the sentence level models, these word level models

are nested - in fact their definition is identical, save for the presence of a fixed sequence of previous words c.

This is illustrated in figure 3.2.

While I will by default talk about word level incrementally in examples throughout this chapter, it is important

to note that this is not a commitment of the model: the proposed approach could apply both to smaller units
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Figure 3.2: The crucial change from global to incremental RSA is to parametrize the model with a con-
text, here a sequence of previous words (or segments), and have U be the set of possible subsequent words
(segments) which could follow. In all other respects, the RSA model remains unchanged.

(e.g. sub-word segments, or even characters, as in chapter 4.2.3) and larger ones (sequences of sentences -

see section 3.4).

The intuition behind these incremental models is that the choice of a word may be made by a speaker in order

to be informative, rather than the choice of a whole sentence. Consequently, a listener may draw an inference

without the received utterance being complete. I argue that this is the case for anticipatory implicatures.

Formally, the first step is to define word level analogues to the standard RSA agents, which I refer to as

LWORD
0 (w|u, c), SWORD

1 (u|w, c), and LWORD
1 (w|u, c). Note that in these models, utterances u correspond to

words not sentences. c is a sequence of words. We start with LWORD
0 .

In this chapter, where the focus is on direct comparison between global and incremental models, the goal is

to define LWORD
0 as similarly to LSNT

0 as possible. This motivates defining an incremental semantics JuK(w) :
U → C→ [0, 1] in terms of a global semantics JuK(w) : U →W → {0, 1} and a set of full expressions.

For any partial sequence c and set of states W , JcK(w) ∈ [0, 1] is the number of full expression extensions of

c which are compatible with w divided by the total number of possible extensions of c into full expressions.

Here, a possible extension is determined by a prespecified set of full expressions, but one could also envision

a grammar determining which extensions are valid. Where c is a full expression, JcK(w) ∈ {0, 1} is as in

the global model; where c is a partial expression, JcK(w) is real-valued in the interval [0, 1], representing the

biases created by c.

Note that the return value of the incremental semantics is the continuous interval [0, 1], rather than the discrete

set {0, 1}; it is a real number. Also note that the process to convert a global semantics into an incremental
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one requires a fixed set U of full expressions to be specified explicitly.

The advantage of this approach is that a direct comparison of both incremental and global models, on the

basis of a single semantics, is possible. However, this move undermines one proposed goal of incrementality,

namely to create a model of a speaker which does not have to reason about an infinite utterance set. In

the case where an incremental semantics is defined in terms of a global one, even LWORD
0 is intractable to

compute when U is infinite. For this reason, chapter 4 focuses on tractable variants of SWORD
1 and LWORD

1 ,

where the intractable conversion from a global semantics is avoided. The goal here, then, is a theoretical one:

to understand the dynamics of incremental models of pragmatic reasoning, as they differ from their global

counterparts.

With the definition of an incremental semantics in place, the equations for the incremental literal listener

LWORD
0 and incremental pragmatic speaker and listener SWORD

1 and LWORD
1 , are straightforward:

LWORD
0 (w|c,word) ∝ Jc+ wordK(w) · PL(w) (3.1)

SWORD
1 (word|c, w) ∝ LWORD

0 (w|c,word) · PS(word) (3.2)

LWORD
1 (w|c,word) ∝ SWORD

1 (word|c, w) · PL(w) (3.3)

By contrast, compare to the definitions of the global literal listener, pragmatic speaker and pragmatic listener,

introduced in chapter 1.1.1:

LSNT
0 (w|u) ∝ JuK(w) · PL(w) (3.4)

SSNT-GP
1 (u|w) ∝ LSNT

0 (w|u) · PS(u) (3.5)

LSNT
1 (w|u) ∝ SSNT-GP

1 (u|w) · PL(w) (3.6)

Note that the previously introduced global S1 is now termed SSNT-GP
1 , to distinguish it not only from a word

level speaker SWORD
1 , but from a sentence level speaker SSNT-IP

1 defined in terms of SWORD
1 , which will be

introduced shortly.

Figure 3.3 presents a running illustrative example, to understand the behavior of SWORD
1 . We imagine there

are three referents, a red dress (R1), a blue dress (R2), and a red hat (R3). We have a simple language

composed of three utterances, dress, red dress, and red object, each with its expected semantics.

I represent the end of an expression as a STOP token, so that the choice of STOP as the next “word” represents

the decision that the expression is complete. Costs are taken to be 0, unless specified otherwise; see chapter

1.1.2 for how to incorporate cost into S1 models.

An important edge case There may be cases in which there is no possible true continuation of a sequence

of words into a true utterance. For instance, no continuation of red constitutes a truthful description of
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R2. In such situations, we say that probability is evenly distributed over all choices of word, so that

SWORD
1 (dress|c = [red], w = R) = SWORD

 (object|c = [red], w = R) = .. The reason to specify

this case explicitly is to avoid a division by zero, which would otherwise occur here, since all choices have

zero probability mass.

Behavior of word level pragmatic models Figure 3.3c summarizes the reasoning of the incremental prag-

matic speaker SWORD
1 , assuming 0 cost on all words for simplicity. This agent prefers red as a first word

when conveying R1: SWORD
1 (red|c = [], w = R1) = 0.57. However, if R3 is the intended referent, the

agent must begin with red (since hat is not an available word in this simple example). As shown in figure

3.3d, this fact allows the pragmatic listener to infer from hearing red that the referent is most likely R3:

LWORD
1 (R3|c = [], red) = 0.64. This is closely related to the core dynamic underlying anticipatory implica-

tures, as discussed in section 3.2.2.

More generally, the behavior of SWORD
1 is to prefer informativity at each choice of subsequent word. It

behaves just like SSNT-GP
1 in this regard, but for each choice of the next word rather than the expression as a

whole.

3.1.1 An unrolled incremental speaker

From the word level agent SWORD
1 , one can use the chain rule to obtain SSNT-IP

1 , a sentence-level speaker3

whose values are the result of incrementally pragmatic inferences:4

SSNT-IP
1 (u|w) =

n−1∏
i=0

SWORD
1 (ui|c = u[: i], w) (3.7)

To sample an utterance from SSNT-IP
1 given w, we choose the first word word by sampling from

SWORD
1 (word|w = w, c = []), and this decision then becomes part of the context for sampling the second

word from SWORD
1 (word|w = r, c = [word]). Similarly for the nth word. Whereas SSNT-GP

1 in (3.5) makes

pragmatic calculations on the basis of whole utterances, SSNT-IP
1 makes incremental pragmatic decisions about

each choice of word, which together also give rise to a distribution over utterances.

Importantly, SSNT-IP
1 can plan ahead, in the sense of finding the sequence of words which maximizes the

probability of SWORD
1 at each step. However, this planning does not involve pragmatics: there is never

comparison of a sequence’s informativity with the informativity of other sequences. In this sense, pragmatics

only happens at the word level in SSNT-IP
1 , even though it is a sentence level model.

3In examples that follow, the “sentences” produced by SSNT-IP
1 are really noun phrases, so rather than “sentence-level speaker” it is

perhaps more appropriate to describe the model as a speaker which produces multiword phrases.
4I use u[n] for the (n− 1)th element of a list u, and u[: n] for the sublist of u up to but not including u[n].



CHAPTER 3. INCREMENTAL PRAGMATICS 50

J·K R1 R2 R3

dress 1 1 0
red dress 1 0 0

red object 1 0 1

cost

dress 0
red dress 0

red object 0

(a) Reference game.

LSNT
0 R1 R2 R3

dress 0.5 0.5 0.0
red dress 1.0 0.0 0.0

red object 0.5 0.0 0.5

SSNT-GP
1 dress red dress red object

R1 0.25 0.5 0.25
R2 1.0 0.0 0.0
R3 0.0 0.0 1.0

LSNT
1 R1 R2 R3

dress 0.2 0.8 0
red dress 1.0 0.0 0.0

red object 0.2 0.0 0.8

(b) Global RSA.

dress : 0.43

R1 red : 0.57 dress : 0.67

object : 0.33

dress : 1.0

R2 red : 0.0 dress : 0.5

object : 0.5

dress : 0.0

R3 red : 1.0 dress : 0.0

object : 1.0

(c) Incremental RSA speaker predictions.

R1 : 0.36

red R2 : 0.00

R3 : 0.64

(d) Incremental RSA listener predictions upon hearing
red.

SSNT-IP
1 dress red dress red object

R1 0.42 0.38 0.20
R2 1.0 0.0 0.0
R3 0.0 0.0 1.0

(e) Incremental utterance-level predictions from SSNT-IP
1 .

Figure 3.3: Illustrative example comparing global and incremental RSA. For ease of comparison to the global
model, the STOP token for the incremental model is not depicted.
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full : sem LSNT
0 S1UTT-X

inc : sem LWORD
0 SWORD

1

Figure 3.4: Two ways of constructing an utterance-level pragmatic speaker from a semantics. The solid green
path is to obtain a literal listener over full utterances and then perform pragmatics, which gives rise to SSNT-GP

1
while the dashed red path is to obtain an incremental literal listener, use it to construct a word-level pragmatic
speaker from LWORD

0 and then use this to define an utterance-level pragmatic speaker, SSNT-IP
1 .

Efficient search for optimal utterances In the examples considered in this chapter, where the set of possible

utterances is still finite, it is possible to compute to maximum a posteriori (MAP) utterance u given a state

w for SSNT-IP
1 . This is simply the process of searching over all possible full utterances and choosing the one

which maximizes the product of SWORD
1 at each step (full search). In infinite settings, or even settings with a

large set of possible utterances, this is no longer possible. This is not a result of the pragmatic reasoning in

SSNT-IP
1 , but merely of the fact that searching over the space of all sequences is in general intractable.

Chapter 4 discusses the sampling strategies such as greedy search and beam search needed in such cases.

Insofar as SSNT-IP
1 is a cognitively plausible model for real natural language, where the set of utterances is

indeed infinite, it is reasonable to assume that some form of search other than full search must be taking

place. However, for present purposes, I compare the behavior of SSNT-IP
1 with full search to SSNT-GP

1 .

3.2 The consequences of incremental pragmatic reasoning

Importantly, while SSNT-GP
1 and SSNT-IP

1 are of the same type, in the sense of being conditional probability

distributions over full utterances, they are not the same distribution. Another way to put this is to say that

the operations of pragmatic reasoning and of unfolding a sentence word by word do not commute - their

order matters. This raises two immediate questions: in ways ways do the predictions of the two models differ

qualitatively, and are there empirical data which are better modeled by one over the other?

Core differences Figure 3.4 depicts the core relationships between the global and local models, focusing on

the pragmatic speaker. The agents along the solid green path define the global model SSNT-GP
1 , while those

along the dashed red path define the incremental model as given by SSNT-IP
1 .

The predictions of SSNT-IP
1 for our illustrative example are given in figure 3.3e. Comparing them with the

global pragmatic speaker predictions in figure 3.3b, we see that the two make substantively different pre-

dictions. In the global model, the speaker who wishes to refer to R1 prefers red dress. In contrast, in the

incremental model, the speaker referring to R1 prefers dress. The reason for SSNT-IP
1 having these values is
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that saying dress ensures the termination of the utterance (given the set of utterances that are available in this

example), which therefore has probability 1.0 at the next time step, while saying red leaves two options, dress

and object.

Thus, SSNT-GP
1 and SSNT-IP

1 are not only quantitatively different, but even differ in their predictions about which

utterances are optimal. This particular case highlights the propensity of SSNT-IP
1 to prefer utterances which at

each step minimize the uncertainty at future steps.

Figure 3.5 provides an abstract example of the difference between SSNT-IP
1 and SSNT-GP

1 . Moving from left

to right, the numbers in green depict the SWORD
1 probabilities at each of the two steps in the generation of a

complete two segment expression, when the target reference is W1 instead of distractor W2. The probability

of the full utterance at SSNT-IP
1 is the product of the two SWORD

1 steps.

When referring to W1, SSNT-GP
1 gives equal weight to AA, BA and BB. SSNT-IP

1 , however, first chooses between

A and B: in this decision, B is preferred, since one of the two continuations of A, namely AB, is not compatible

with W1. However, if A is chosen, the subsequent choice is fully determined to be A: (p(A|[A],W1 = 1.0).

This results in a preference for AA.

I now turn to an empirical question: do these differences in SSNT-IP
1 from SSNT-GP

1 bear any relation the data

from natural language? I argue that they do, and that the incrementality of SSNT-IP
1 allows it to explain data

which cannot be explained by a global model.

3.2.1 Cross-linguistic discrepancies in over-informative language

It has been observed that, when generating referring expressions (REs), humans often provide more infor-

mation than necessary to refer unambiguously (Engelhardt et al., 2006; Herrmann and Deutsch, 1976). For

instance, Rubio-Fernández (2016) shows that English speakers often use redundant color terms (e.g., the

red dress) in a scene with only a single dress, where the shorter utterance dress would suffice. However,

Rubio-Fernández (2016) also notes that Spanish speakers are less likely to over-describe with the analogous

referring expression, el vestido rojo, in the same situation. This difference is a challenge for non-incremental

pragmatic accounts, since, ceteris paribus, we would expect semantically equivalent Spanish and English

REs to have the same production probability.

Using incremental pragmatics, one can model an idealized version of the English case as follows: let the

referents be a red dress (R1) and a blue hat (R2), and the possible full utterances be dress, red dress, hat, and

blue hat, with the obvious semantics.

I make the following assumption regarding the cost term: assume a cost of 1.0 for all words but a cost of 0.0

for the STOP token. Further assume that a full expression’s cost is the sum of the cost of its words. The effect

of this cost term is to penalize longer expressions, all else being equal.
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Figure 3.5: A depiction of the probabilities of the SSNT-IP
1 in red and SSNT-GP

1 in green, for a simple abstract
example. The four full utterances are AA, AB, BA and BB, while the two worlds are W1 and W2. The
semantics assigns u = W1 and w = AB to 0 but all other utterance–world pairs to 1. Given a world w, the
incremental speaker first chooses the first letter to be A or B, and then chooses the second letter conditioned
jointly on w and the first letter, to obtain a full utterance. The resulting full utterance probabilities are
compared with the predictions of the global SSNT-GP

1 . As can be seen, the incremental and global speakers
assign different probabilities to each utterance and are consequently distinct from each other.



CHAPTER 3. INCREMENTAL PRAGMATICS 54

On these assumptions, the globally pragmatic speaker SSNT-GP
1 prefers dress to red dress, since both are fully

informative but the latter is costlier: SSNT-GP
1 (dress|R1) = 0.73 > SSNT-GP

1 (red dress|R1) = 0.27. Meanwhile

the incremental pragmatic speaker SSNT-IP
1 is undecided: SSNT-IP

1 (dress|R1) = SSNT-IP
1 (red dress|R1) = 0.5.

The increase in mass on the over-informative RE red dress in SSNT-IP
1 as compared to SSNT-GP

1 is the result of

incremental processing: the decision between red and dress is made on the basis of informativity, and both

words are equally informative. However, if red is chosen, the subsequent, now over-informative word dress

has to follow, since red on its own is not a full expression.

I explore the generality of this dynamic – that incremental pragmatics may lead to the language model being

compelled to produce longer utterances – in section (3.3), where I apply the model to real-world data, in the

form of the TUNA corpus.

However, this effect does not obtain in Spanish, where adjectives are post-nominal. In the Spanish case, let

our utterances be vestido, vestido rojo, sombrero, and sombrero azul, with the same referents and costs as

before. Then there is no difference between the global and incremental models:

SSNT-GP
1 (vestido|R1) = 0.73 >SSNT-GP

1 (vestido rojo|R1) = 0.27

SSNT-IP
1 (vestido|R1) = 0.73 >SSNT-IP

1 (vestido rojo|R1) = 0.27

When choosing the word to follow vestido, the incremental pragmatic speaker has no need to say rojo rather

than STOP, since the goal of communicating the referent has already been completed by vestido. As a result,

the speaker chooses the less costly option, STOP. The relevant difference here from the English case is that it

is grammatical to stop after the first word (since the first word is a noun, not an adjective as in English).

A qualitative property which this example illustrates is a dislike in SSNT-IP
1 for expressions which begin with

a sequence of words which would mislead the incremental literal listener LWORD
0 . This is the basis on which

anticipatory implicatures are formed, as discussed in section 3.2.2. This is not a hard constraint: utterances

which would initially mislead an incremental listener are not categorically ruled out. However, the question

of whether this behavior is empirically justified is a worthwhile topic for future investigation.

3.2.2 Anticipatory implicatures

The case of anticipatory implicatures introduced by Sedivy (2007) involve a listener making a pragmatic

inference on the basis of a partial utterance. In particular, “Pass me the tall –” triggers an inference that the

referent has a short counterpart, motivating the speaker to have used the modifier tall.

I take this as motivation for a model capable of calculating implicatures based on partial utterances. In

particular, I propose the incremental pragmatic listener LWORD
1 is suitable for this task, which can calculate

an implicature by reasoning that, had the speaker intended to refer to the pitcher, they would not have had
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Figure 3.6

any motivation to say “tall”. By contrast, on the assumption that the speaker’s referent is the tall cup, the

contrastive modifier serves to distinguish the intended referent from the short cup.

To model this implicature formally, I make the simplifying assumption that the possible full utterances are

tall cup, short cup, tall pitcher, cup, pitcher, and key, with the referents shown in figure 3.6. For consistency

with the previous example, assume the additive cost function from section 3.2.1.

On hearing tall as the first word of an utterance, LWORD
1 , the incremental pragmatic listener, can draw the

following inference: the intended referent is likely to have been the tall cup, since had it been the tall pitcher,

there would have been no need to use the contrastive modifier tall: LWORD
1 (the pitcher|c = [], tall) = 0.4

while LWORD
1 (the tall glass|c = [], tall) = 0.6.

This implicature is cancelable, and indeed, were the next word to be pitcher, we would exclude all refer-

ents but the pitcher. In this respect, the model’s inference represents the confusion created by uttering “tall

pitcher”, where after the first word of the utterance, the majority of probability mass is on a referent (the tall

cup) which, after the second word (pitcher), has no probability mass.

3.3 Comparison to human behavior

In order to observe the behavior of the incremental pragmatic model on real data, I make use of the TUNA

corpus (van Deemter et al., 2006). TUNA is built around a referring expression task grounded in images. The

images are coded using a fixed set of attributes, and the human-produced utterances are coded using the same

attributes. Thus, TUNA lets us study the core content of naturally produced referring expressions without the

necessity of confronting the full complexity of natural language.

The goal is to show that, when a cost is imposed which prefers shorter utterances, the incremental model
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Figure 3.7: An example target entity from the furniture domain, along with its coding as a dictionary, and the
human generated referring expression for it in a context of other images.

SSNT-IP
1 is less affected, and on average produces more two-word utterances than SSNT-GP

1 .

I hypothesize this on the basis of the preference of SSNT-IP
1 for utterances where the choice of each word

is made with high certainty, as discussed in section 3.2. This means that informative one-word utterances

which have reasonable probability of being extended with a second word will score lower than two-word

utterances where the choice of the first word largely determines the choice of the second. Since most one-

word utterances admit the possibility of an extension to a second word, this would result in a preference for the

longer, two-word utterances. This would provide further evidence that the propensity for overinformativity

described in section 3.2.1 is indeed an effect of the SSNT-IP
1 model on less idealized data.

Data The TUNA corpus defines a reference game in the sense of figure 3.3a. Each trial contains a set of

images (entities), of which one or several are the target, and a human-generated referring expression for the

target in the context of all the images. I refer to the full set of target and non-target entities as the context set.

Both images and utterances are coded as sets of attributes (figure 3.7). This coding defines a semantics. For

instance, in figure 3.7, the utterance “the grey desk” is true of the entity, since type:desk and colour:grey are

included in its attributes. For the furniture domain, attributes such as color, object type, and size are coded.

The people domain is more complex, coding for more attributes, including age, clothing, hair color, glasses,

and orientation. Both domains also code for the position of the image relative to the other images in the

context set.
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3.3.1 Methods

For simplicity, I restrict the model to the subset of the furniture and people domains where only a single

referent is provided, and consider only utterances of two words or fewer. These constitute 32% of the total

utterances in the single referent corpora, and to our knowledge are not distinct in other ways than their length.

For each trial, the possible utterances are those from the set of all two-word utterances across the entire corpus

(either of furniture or people) which are compatible with at least one of the entities in the trial. I calculate

the set of optimal utterances (since there may be more than one utterance with maximum probability) for

both SSNT-GP
1 and SSNT-IP

1 . For our cost function, we assume all words have a cost of 1.0 except the STOP

token, which has cost 0.0. Utterances cost the sum of their words. This has the effect of penalizing longer

utterances.

For each trial, we have a set of entities as referents, with the designated target identified among these entities.

In addition, we can define the set of all possible true utterances for a given trial. Thus, it is possible to make

predictions according to both SSNT-GP
1 and SSNT-IP

1 for each trial without having to enrich the TUNA dataset

in any way.

3.3.2 Results

As expected, a preference is found for longer utterances; out of the 114 people trials, SSNT-GP
1 identifies 120

two-word utterances as optimal, compared to 287 for SSNT-IP
1 . In the 83 trials of the furniture domain, SSNT-GP

1

marks 88 two word utterances as optimal, compared to 149 for SSNT-IP
1 . (More than one utterance may be

optimal for a given trial, in the event that multiple utterances have the same, maximal probability of being

chosen.)

An example of a representative case is the trial where the entity in figure 3.7 is the target, and no other dis-

tractors are grey, although others are desks. In this case, both “grey” and “a grey desk” are fully informative,

in the sense of only being compatible with the target. With the cost term having the effect of penalizing

longer utterances, SSNT-GP
1 chooses “grey” as optimal. For SSNT-IP

1 , however, neither of these utterances are

optimal, because probability is divided between stopping after “grey” and continuing with “desk”. Instead,

the optimal utterance, “right middle”, describes the position of the target among the images of the context

set5. “Right” is not an available full utterance (as it is not attested in the data) and so no probability mass is

lost on the possibility of stopping at this point in the production of the utterance.

While this result offers a possible motivation for over-informative behavior, the nature of the relation between

the observed behavior of the model and overinformativity is not straightforward and merits further work –

5Note that “right middle” counts as a full utterance in this dataset, as it is produced as a referring expression by human annotators.
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for one thing, two-word utterances are not always more informative than one-word utterances. In particular,

it would be desirable to use a more direct proxy for over-informativity than preference for longer utterances.

3.4 Discussion

The core proposal of this chapter was a model of incremental pragmatic reasoning, consisting of SWORD
1 and

LWORD
1 . The former is a model of a speaker who tries to maximize informativity at each choice of word or

segment during the generation of an utterance, while the latter is a model of a listener who, having heard a

partial utterance, assumes that the next word of it was generated by the informative speaker SWORD
1 .

The broader idea on offer is of pragmatic reasoning performed during a recursive process, here the unrolling

of a sentence word by word. I now discuss two ways in which the core notion of incremental pragmatic

reasoning could be differently applied.

Discourse level pragmatics The apparatus of pragmatic inferences made incrementally given a context c,

could be adapted to discourse level phenomena. For instance, consider the situation of a speaker who produces

a speech. To the extent that such a speaker is pragmatic, it is clearly not by considering the whole space of

possible speeches, and choosing the most informative one. A much more reasonable proposal is that the

speaker chooses each sentence pragmatically, or even each phrase or word.

In this sense, even a sentence level model of pragmatic reasoning, like SSNT-GP
1 , implicitly concedes that

pragmatics is incremental on the level of sentences (although no mechanism for multisentence language

production is specified), presumably with greedy unrolling, so that a speaker chooses what to say sentence

by sentence.

A direction of future research is to investigate whether the incremental model SSNT-IP
1 , when applied at the

sentence level over the course of a multiple sentence utterance, acts in accordance with human behavior.

For instance, a consequence of the incremental definition of SSNT-IP
1 is a preference for putting the most

informative information early. Is this borne out in the setting of multi-sentence utterances?

Pragmatic compositionality As well as applying the incremental approach to smaller or larger units than

words, a possible extension is to more complex recursive structure.

Abstractly, the incremental approach to pragmatics presented in this chapter exploits the recursive structure of

lists, where the probability of the nth item is a function of the previous n− 1 items. Rather than unfolding an

utterance (or rather, a distribution over utterances), and then performing pragmatic reasoning, the approach is

to perform pragmatic reasoning inside the unfolding (or in the case of interpretation, folding) of an utterance.

There is a sense, therefore, in which this approach is compositional: pragmatic meanings are deriving for

subparts of an expression, and then assembled into a whole. Of course, compositionality in language, at least
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in the standard sense of semantic compositionality, follows the recursive structure given by a syntax, which

is richer than the list recursion used here.

However, there is no reason that exactly the same strategy, of calculating pragmatic enrichments during a

recursive process, could not be applied in a more complex case. As such, an avenue of future work is to

investigate the behavior of a comparable model to SSNT-IP
1 for a set of utterances defined with a probabilis-

tic context free grammar (Jelinek et al., 1992), which more closely resembles the constituent structure of

natural language. In this case, inferences would be computed at each node, e.g. during the production or

interpretation of a VP node.



Chapter 4

Informative Language Generation

The work on image captioning discussed in this chapter is the product of joint work with Chris Potts and

Noah Goodman, as published in (Cohn-Gordon et al., 2018a). The work on translation is the product of joint

work with Noah Goodman, as published in (Cohn-Gordon and Goodman, 2019). Parts of the prose of those

two papers appears in this chapter.

Chapter 3 focused on idealized interpretations of SWORD
1 and LWORD

1 , and the linguistic relevance of the

differences between incremental and global models of pragmatic reasoning. By contrast, the focus of the

present chapter is the application of Bayesian models of pragmatics to computational tasks involving natural

language generation.

Recent years have seen a significant improvement in the quality of statistical models for AI tasks. In par-

ticular, deep architectures have been used to great success in both vision and language (LeCun et al., 2015).

Combining statistical models of natural language and vision with the RSA framework for pragmatic reason-

ing is an appealing prospect, since it promises a way to utilize the dynamics of pragmatic reasoning in real

world settings. On the assumption that RSA models accurately capture human behavior, this is a means to

improve AI systems for language generation and understanding, in a way which makes use of an interpretable

model.

Thematically, the approach here parallels chapter 2. The goal is to use a statistical model as a semantics

on the basis of which pragmatic reasoning can be performed. The difference here is that rather than using

word embeddings as in chapter 2, the present focus is on neural models of grounded language generation, i.e.

models which take the form P (u|w) for an utterance u and a state of some kind w. This encompasses the

two tasks discussed in detail in this chapter, image captioning and translation. For image captioning, w is an

image, and u is a caption which describes that image. For translation, w is a source language sentence, and u

is a translation into a target language.

60
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Reference Games, Meaning and Natural Language Generation

In the context of the RSA framework, a speaker model is a conditional probability distribution P (u|w) which

can be interpreted as a system which takes a state w and (stochastically) produces an utterance u. A state is

to be understood as a way that the world can be (or more precisely, an equivalence class of ways the world

can be).

Recall also that a listener model takes an utterance u and stochastically produces a state, or equivalently:

deterministically produces a distribution over states. In chapter 1.2.1, we equated this output distribution

with the meaning of u.

These ideas cohere naturally with the task of image captioning. We can think of images as representations of

the state of the world. A captioner is then a system which translates the information inherent in that state into

a natural language expression.

A similar idea applies to translation. Rather than representing the state of the world with an image, we

represent it with a natural language sentence. For example, we can think of a translation system which takes

the sentence “It is raining.” as producing a (French) natural language expression to express the state of the

world represented by this English sentence.

Informativity While RSA models are capable of capturing a range of behaviors, both in the production

and interpretation of language, I focus here on one of the simpler dynamics of the framework, namely the

preference for informativity of S1, or in Gricean terms, the adherence to the maxim of Quantity. As such, the

approach I discuss is to instantiate S1 in the context of a neural language production model, and to use it as a

means of compelling that system to be informative.

Here, a pragmatically informative speaker is one which produces an utterance — out of an unlimited set

of utterances — which not only describes the state of the world, but takes into account their interlocutor’s

beliefs about what other states in W are possible. The thesis here is that this behavior is eminently desirable

in real-world systems, and imitative of human behavior. The reason for this is that a lack of informativity has

turned out to be a failing of language generation systems on a variety of tasks, such as translation (Li and

Jurafsky, 2016) and dialog (Jiang and de Rijke, 2018), where systems often produce generic uninformative

language.

The challenge of an infinite utterance space The set of possible utterances in natural language is at least

countably infinite (Chomsky, 1957; Langendoen et al., 1984). When U is an infinite set of sentences, S1, or

more specifically SSNT-GP
1 (as introduced in chapter 3) is intractable to compute. This is a practical concern,

but also a conceptual and cognitive one: how do humans reason over possible alternatives when the set of
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utterances that could be chosen as alternatives is unbounded? Said differently, how to we upgrade contrived

models of pragmatic reasoning in which U is small and finite to a setting where U can be any sentence?

For image captioning and translation (as well as other natural language generation tasks), the models that

result from training typical deep learning systems (see section 4.1) can produce any sequence of words (or in

some cases, characters). As such, they provide a good setting to explore this problem, by taking U to be the

set of all possible sequences of words, and using the distribution produced by a neurally trained captioning or

translation model over these sequences as our semantics.

What was introduced as a theoretically appealing model in chapter 2, namely the incrementally pragmatic

speaker SSNT-IP
1 , serves the purpose of providing a tractable algorithm for informative language production in

natural language generation tasks. The reason for this algorithmic advantage is that SSNT-IP
1 reasons about a

space of alternatives consisting of the next generated segment, which in the case of word level incremental

pragmatics has the size of the vocabulary.

I now introduce the neural architectures relevant to the approach of this chapter (section 4.1), the application

of Bayesian pragmatics to those architectures (section 4.2), and evaluations on the tasks of image captioning

and translation (sections 4.3 and 4.4).

For the latter, I introduce an extension in which the use of both a neural speaker and listener model allows

for an informative speaker to be defined without the explicit specification of a set of states (section 4.5). This

returns us to the question raised in the previous chapter, namely: can we find ways to specify a state space

(and a prior over that state space) automatically?

4.1 Sequence models

Many NLP tasks require a system to produce text, consisting of a sequence of words, subwords or characters,

conditional on some input. For image captioning (Farhadi et al., 2010; Karpathy and Fei-Fei, 2015; Vinyals

et al., 2015), the input is an image, with the sequence output being a description of that image. For translation

(Bahdanau et al., 2014; Gehring et al., 2016; Vaswani et al., 2017), the input is also a sequence, but in a

different language to the output. For summary (Rush et al., 2015), both the input and output are in the same

language.

Deep learning Recent deep learning approaches, which have yielded unprecedented success at a range of

visual and linguistic tasks train an end-to-end architecture directly from input to output. For example, an

image captioning architecture takes an image, represented as a vector, performs a number of operations to

arrive at an encoding of the image, and a further series to translate that encoding into a prediction about a

sequence of words.
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These operations are parametrized by a vector θ, which is learned from data1. More concretely, one wants to

find a value of θ for which a loss function, roughly corresponding to the probability of producing the output

sequence from the input sequence or caption, is low on average for a large training dataset. Using stochastic

gradient descent, one can obtain a value of θ which is a local minimum for the loss function. The procedure is

similar for translation and captioning, although the details of the architecture (i.e. the function mapping from

inputs to outputs) differs. What is important is that all the operations in the architecture are differentiable, so

that gradients can be easily calculated. Tools for computing this gradient automatically (Abadi et al., 2016;

Paszke et al., 2017) allow for the rapid prototyping of a wide variety of models, and have contributed to the

speed of the development of deep learning in recent years.

Sequential decoding Once trained (i.e. once a value of θ has been obtained on the training dataset), the

model can be used to make predictions. A feature of language generation models, ranging from recurrent

neural networks (Mikolov et al., 2010), to convolutional networks (Kalchbrenner et al., 2014) to transformers

(Vaswani et al., 2017), is that their predictions, at decoding time, amount to a probability distribution over the

next token, given an input (such as an image or source sentence) and a previous sequence of tokens. Here, a

token could be a word, subword or character, depending of the architecture of the model in question. As in

chapter 3, I use words as the default token when describing these models. This assumption that a sentence

should be generated left to right, token by token, in not a necessity, but is common in practice.

What this means, is that a trained image captioning or translation model, across practically all commonly used

architectures, amounts to a distribution SWORD
0 (token|w, [token]), where [token] is the sequence of previous

tokens in the sentence generated so far. I refer to this distribution as SWORD
0 to suggest a connection to the

RSA framework which will shortly be exploited, namely that a trained neural language generation model can

be viewed as an RSA speaker model. Since this speaker incorporates no explicit pragmatic reasoning, it can

be viewed as a “literal” speaker, and receives the 0 index accordingly.

From token level to sentence level distributions SWORD
0 yields a distribution SSNT

0 over full sentences,

similar to what was introduced in chapter 3. Python list indexing conventions are used here, with “+” meaning

concatenation of list to token or list of tokens, and zero-indexing assumed:

SSNT
0 (u|w, k) =

n−∏
i=

SWORD
 (u = u[i]|w = w, c = k + u[: i]) (4.1)

Here k is a sequence of tokens produced already (generalizing from 3.7 in chapter 3.1 where k is assumed to

be the empty list). SSNT
0 is then a distribution over sequences u which extend k (but note that our convention

here is that u does not contain c).
1In practice, θ is a set of multidimensional arrays, but can be treated as a single vector, consisting of all the parameters concatenated.
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SSNT
0 returns a distribution over full target language sentence continuations. In what follows, we omit k when

it is empty, so that SSNT
0 (u|w) is shorthand for SSNT

0 (u = u|w = w, k = []). Informally, we will refer to the

transformation that yields the distribution SSNT
0 from SWORD

0 as the unrolling of SSNT
0

2.

Importantly, it is not obviously the case that language quality (as measured by human judgment) and proba-

bility of a sequence under SSNT
0 are linearly correlated. Indeed, for the case of text generation from language

models, Holtzman et al. (2019) find that very high probability sequences are often very linguistically defi-

cient, although these high probability sequences are rare (among all possible sequences).

Thus, instead of obtaining a literal speaker or listener model through a handwritten semantics, we rely on

a pretrained neural model SSNT
0 . Note that this model will assign some probability to untrue utterances as

well as ungrammatical sequences of words, and perhaps encode some preference for informative or salient

utterances already, unlike an SSNT
0 model defined in terms of a hand constructed semantics. For example, an

image captioning system will assign some probability (even if very little) to “This is a dog” given an image

of a red bus, and may already prefer “This is a red bus” to “This is a bus” even without explicit pragmatic

reasoning.

Model architectures For image captioning, a standard architecture is a convolutional neural network, fol-

lowing by a recurrent network such as an LSTM (Gers et al., 1999). Often attention is used (Xu et al., 2015),

which provides a mechanism for determining which part of the image to focus on at each point in the process

of producing the caption.

BiLSTMs with attention (Bahdanau et al., 2014), and more recently CNNs (Gehring et al., 2016) and entirely

attention based models (Vaswani et al., 2017) constitute the state-of-the-art architectures in neural machine

translation.

For our purposes, the details of these architectures are irrelevant. The pragmatic reasoning takes place once

the model is already trained, at which point it is simply a black box conditional probability distribution over

the next token, given a sequence of previous tokens and a state.

4.2 Bayesian pragmatics in the context of neural language generation

Up to this point, we have discussed SWORD
0 and SSNT

0 in a way which was deliberately agnostic as to whether

the underlying model was for translation, image captioning, or another grounded natural language generation

task. We do this to emphasize that the approach taken in this chapter applies to all such tasks. For the purposes

of motivating the use of pragmatics in these settings, we now consider two concrete examples.

2This unrolling can be understood as a list unfold in the sense of functional programming, although this approach was not taken in
the Python implementation used here.
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Figure 4.1: Two images, of a red London bus and a yellow school bus.

Informative image captioning In order to perform image captioning well, a computational system must

have information about how expressions in natural language (represented as lists of words or even characters)

correspond to images (represented as arrays of pixels). Recent work has given rise to systems which perform

well at this task (in the sense of providing accurate captions for unseen images) in the form of end-to-end

neural architectures (see section 4.1), trained on large datasets of pairs of images and captions (Lin et al.,

2014; Krishna et al., 2017).

Good captions ought not only be true, but informative. For example, a caption of a picture of a horse in a field

should not be: “Blades of grass”, since this fails to distinguish it from images of grass alone. Neural image

captioning models perform well with respect to producing true captions but often less well with respect to

informativity. In other words, the captions they generate are often too generic, omitting important details.

This is made apparent when two images which are different in important ways receive the same caption. As

an idealized example, suppose that A bus was the caption for both images in figure 4.1.

The goal of this task is to take a set of images, of which one is the target and the rest are distractors, and

return a caption which unambiguously identifies the target and not the distractors. This can be understood

as an instance of referential expression generation, which suggests a relation between this task and the task

performed by an S1 informative speaker model.

For instance, consider R1 and R2 displayed in Figure 4.1. If the task of the captioning model is to refer to

R1 unambiguously in the context of R1 and R2, the utterance This is a bus. would be uninformative.

This behavior would amount to a failure to distinguish between R1 and R2 in a reference game, where the

goal of the speaker was to communicate their target, say R1. The RSA informative speaker S1 is designed

precisely to succeed at this reference game. As such, one imagines that if we could use a trained neural image

captioner S0 as the basis for a pragmatic image captioner S1, we would have a system which would describe

features of the target image which differed from the other images in W .

The result will be that the preferred utterances of the S1 forR1 will mention aspects in whichR1 differs from

R2, insofar as these aspects can be detected by the convolutional neural net being used. This should result in

a system with the semantic power of a deep learning architecture, but the ability to be strategic in language

use of a Bayesian pragmatic model. For example, an S1 model would prefer utterances which were not only
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true but also informative, and so an utterance like A red bus. would be preferred as a caption for R1 in the

context of R2 (that is, when W = {R1, R2}).

Informative translation Very similar considerations arise for translation as do for image captioning. Here,

many sentences which differ significantly in meaning are translated, by state of the art systems, to the same

target language sentence.

For instance, “I cut my finger.” and “I cut my finger off.” describe different states of the world, but are

translated, under state-of-the-art systems3 to a single French sentence: “Je me suis coupé le doigt.”

Again, one can envision the use of S1 built in terms of a neural translation model which produces coherent

translations for a target sentence (e.g. “I cut my finger.”) which are distinct from translations for any distractor

sentence (e.g. “I cut my finger off.”).

With the two cases in mind as motivation, I now describe the process of incorporating pragmatic reasoning,

in particular, informativity, into a neurally trained language generation system.

In our previous examples of RSA models, the nesting has begun with a listener LSNT
1 with an explicit seman-

tics. However, with some simple alterations, a similar RSA model can be built on top of SSNT
0 . To do so, we

define SSNT-GP
1 in two steps, first defining LSNT

1 in terms of SSNT
0 and then SSNT-GP

1 in terms of LSNT
1 . Note that

we refer to this version of S1 as SSNT-GP
1 , in accordance with the naming scheme introduced in chapter 3.

(19) LSNT
1 (w|u) ∝ SSNT

0 (u|w) · PL(w)

(20) SSNT-GP
1 (u|w) ∝ SSNT

0 (u|w) · LSNT
1 (w|u)α

One noteworthy difference between equation (20) and the vanilla RSA S1 of equation (3), introduced in

chapter 1 is that now, the speaker’s prior over utterances is supplied by SSNT
0 conditioned on w, whereas

before, this prior was determined by a separate distribution PS(u) not dependent onw and by default assumed

to be uniform. This is a design choice which encourages SSNT-GP
1 to produce language similar to SSNT

0 . It is

very similar to the solution used by Vedantam et al. (2017), which employs a weighted sum of an informative

(there termed introspective) and literal speaker. This weighting amounts to a prior, similar to the Bayesian

interpretation of a regularization term as a prior.

The motivation for using SSNT
0 as a prior is that, when the prior is uniform over U , the model tends to produce

ill-formed language. This is observed in figure 4 of (Vedantam et al., 2017) (noting that a uniform prior in

the Bayesian setting is equivalent to placing all the weight on the informative speaker.) To see why this is,

note that the term LSNT
1 in the definition of SSNT-GP

1 causes the model to favor captions which are more likely

to be produced by the target image than the distractors, regardless of their truth. So for example, the caption

3Both Google Translate and Fairseq’s pretrained English-French model exhibit this property.
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A red brick is an untrue caption for a red bus, but is more likely to be produced for a red bus than a yellow

one. Even worse, if a nonsensical sequence of characters is more likely to be produced for the target than the

distractors, it too will score highly under LSNT
1 . Thus, using SSNT

0 as a prior constrains the behavior of the

system.

Another possibility is to use a language model Plangmod(u) as a prior, rather than SSNT
0 . This helps rule out

ungrammatical language, but does not resolve the issue of the model generating false but distinctive captions.

However, in section 4.3.2, I suggest that the real cause of untruthful captions is an impoverished space of

possible states (here, images).

Another feature to note of equation (20) is the presence of α (introduced in chapter 1.1.2), which controls the

degree of informativity of the model. As α increases, SSNT-GP
1 ’s distribution becomes more concentrated on

the utterance which maximizes LSNT
1 (w|u). We can therefore view it as determining the degree to which the

model cares about being informative.

We first illustrate the behavior of SSNT-GP
1 with an idealized example where SSNT

0 is hand-specified, and only

two states and utterances are considered. These states are R1 and R2, with utterances bus and red bus

• W = {R1, R2}

• P (w) : uniform distribution over W

• U = {bus, red bus}

• SSNT
0 :

– SSNT
0 (bus|R1) = 0.5

– SSNT
0 (red bus|R1) = 0.5

– SSNT
0 (bus|R2) = 1.0

– SSNT
0 (red bus|R2) = 0.0

This example is, intentionally, very artificial. It assumes a very restricted set of utterances (yellow bus, for

instance, is not available). It also assumes that red bus and bus are equally probable under SSNT
0 given R1.

The point is to show that under these assumptions, SSNT-GP
1 breaks the symmetry between the utterances

when referring to R1. The more general point is that like the versions of S1 introduced in chapters 1, 2 and

3, SSNT-GP
1 as defined here exhibits a preference for utterances which refer to the target reference and not the

other referents in W .

Indeed, we find that SSNT-GP
1 (red bus|R1) =

2
3 >

1
3 = SSNT-GP

1 (bus|R), as claimed.
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To move from the idealized example above to real image captioning, we simply replace the hand-specified

SSNT
0 with its neural counterpart, as described in section 4.1. No changes need to be made to equation (20).

This is all well and good when U is finite, as in the example above, but the whole point of an image captioning

system is that it does not require a pre-specified set of utterances. Rather, the whole set of possible sequences

of words forms the utterance set U .

The problem Unfortunately for us, while SSNT-GP
1 is a perfectly well defined distribution over an infinite

set U given a neural model SSNT
0 , actually using it, in the sense of sampling from it, finding the maximum a

posteriori caption, or determining the probability of captions conditioned on particular images is impossible.

The reason is simple: SSNT-GP
1 has a normalizing term Z =

∑
u′∈U S

SNT
0 (u′|w) · LSNT

1 (w|u′), where U is

the infinite set of all possible sequences of tokens of any length. Even when bounded to a finite length, U is

exponentially large in the maximum sequence length. As such, computing Z exactly is impossible, and all

we have is an energy model, i.e. a distribution up to a normalization constant.

All we can do is rank any set of captions, since this does not require the normalizing term. This allows us

to iterate through a set of possible captions and determine which is best. This would be a way of finding

the maximum a posteriori caption under SSNT-GP
1 (although this may not be the best caption - see the note in

section (4.1), if not, once again, for the infinitude of U .

The solution employed by Monroe and Potts (2015) and Andreas and Klein (2016a) to the intractabiliity of

inference for SSNT-GP
1 when U is infinite is to sample a small subset of probable utterances from the S0, as a

finite version of U , which I refer to as U ′, upon which exact inference at SSNT-GP
1 can be performed. While

tractable, this approach has the shortcoming of only considering a small region of the true set U , which

decreases the extent to which pragmatic reasoning will be able to apply. In particular, if a useful caption

never appears in the sampled prior, it cannot appear in the posterior. Furthermore, as the maximum caption

length increases, the number of possible utterances |U | increases, and the fraction of captions u in U that are

in U ′ decreases.

The method I employ here is the incremental pragmatic reasoning introduced in chapter 3. A simple version

of this approach in the context of image captioning is employed by Vedantam et al. (2017), where it is termed

the “emittor-suppressor” method. There, the approach is restricted to pragmatics for a pair of images, but is

easily extensible to the full generality of the RSA framework.

Applying incremental pragmatics to neural sequence models takes advantage of the fact that state-of-the-art

models generate language word by word, usually in a left-to-right fashion, as described in section 4.1. In

other words, the distribution SSNT
0 is fully determined by SWORD

0 . This applies not only to RNN architectures

like the LSTM, but also to more recent architectures like the Transformer (Vaswani et al., 2017), which is

used for translation in section 4.4.
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SSNT
0 S1UTT-X

SWORD
0 SWORD

1

Figure 4.2: Two ways of constructing an utterance-level pragmatic speaker from SWORD
0 . The solid green

path is to construct a literal speaker SSNT
0 over full utterances and then perform pragmatics, which gives rise

to SSNT-GP
1 while the dashed red path is to construct a word-level pragmatic speaker SWORD

1 from SWORD
0 and

then use this to define an utterance-level pragmatic speaker, SSNT-IP
1 .

Because SSNT
0 decomposes into SWORD

0 , we can define SWORD
1 in terms of SWORD

0 and obtain a model SSNT-IP
1

from SWORD
1 . We can think of this as performing pragmatic reasoning on the level of words. As depicted

in figure 4.2, this amounts to exchanging the order of two operations: instead of first unrolling a word level

speaker and then performing pragmatics (the global model SSNT-GP
1 ), we can first perform pragmatics and

then unroll a world level speaker (the incremental model SSNT-IP
1 ).

My implementations4 of incremental pragmatics take advantage of this viewpoint, by defined two functions

on objects representing distributions, namely unfold and pragmatics, which can be applied in either order, to

yield SSNT-GP
1 and SSNT-IP

1 .

SWORD
1 is defined in terms of SWORD

0 as follows, analogous to the definition of SSNT-GP
1 in terms of SSNT

0 .

SSNT-IP
1 is then the unrolling of SWORD

1 , analogous to the unrolling of SSNT
0 from SWORD

0 :

(21) LWORD
1 (w|u, c) ∝ SWORD

0 (u|w, c) · PL(w)

(22) SWORD
1 (u|w, c) ∝ SWORD

0 (u|w, c) · LWORD
1 (w|u, c)α

(23) SSNT-IP
1 (u|w, k) =

∏n−
i= S

WORD
 (u = u[i]|w = w, c = k + u[: i])

By default, we take PL to be a uniform distribution over W , although see section 4.2.1 for a discussion of an

alternative approach.

4.2.1 Unrolling strategy

A greedy sampling strategy for a recurrent model P (wd|w, c) (i.e. a model conditioned on an input state

and a sequence of words) and an input w, samples by starting with an empty list [], choosing the highest

probability word wd∗ from P (·|w, []), and then choosing the next word as the highest probability choice

from P (·|w, [wd]), and so on. It stops when it samples an end token, such as a full stop.

4Available at https://github.com/reubenharry/pragmatic-translation
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Greedy sampling is not guaranteed to sample the most probable sequence under the unrolled distribution

corresponding to P (wd|w, c). It will fail to do so if the most probable sequence ever involves the production

of a word which is not optimal. For example, “The red bus.” may be a more probable full caption than “Bus

is red” for an image captioning system given an image of a red bus, but the latter may be produced by greedy

sampling due to the model’s preference for bus as the initial word.

The solution to this problem is lookahead, i.e. the ability to consider a sequence following the immediate

choice before deciding on the next word in the sequence. One way to achieve this is with a beam search,

a common technique for decoding from recurrent models which keeps track of a beam of n candidate se-

quences. At each time step of the decoding, each of the sequences in the beam is extended, yielding a new,

larger beam, from which only the top n sequences with highest probability are kept. For a sufficiently high

value of n, this amounts to full decoding (i.e. an exhaustive exploration of all possible sequences) and for

n = 1, it amounts to a greedy search. Values of n around 10 represent a tractable compromise between full

and greedy search.

Updating the prior at each timestep In the version of SSNT-IP
1 presented above, the decision of the next

word at each time step depends on SWORD
1 and in turn on LWORD

1 , a model which has PL as its (by default

uniform) prior. Put more straightforwardly, SSNT-IP
1 aims to be informative on the assumption that it is com-

municating with a listener which, at each time step, has a uniform distribution over which item in W is the

referent.

One can imagine a model in which this assumption is changed, so that the listener’s prior evolves over the

course of the utterance. For instance, a listener who has heard The red, might already strongly suspect thatR1

is the referent. If this is the case, the speaker should then have less cause to continue to produce informative

language, and might prefer to conclude the caption with bus, rather than, for example, double decker bus.

To put this into practice, we can introduce a new unrolling procedure in which, at timestep t of the unrolling,

the listener LWORD
1 takes as its prior over images the LWORD

1 posterior from timestep (t−1). We can introduce

a prior distribution ip over states for the listener, and use superscript time indexes, to make this more precise:

LWORD:t
1 (w|u, ipt, pct) ∝ SWORD:t

0 (u|w, pct) · ipt(w) (4.2)

SWORD:t
1 (u|w, ipt, pct) ∝ SWORD:t

0 (u|w, pct) · LWORD:t
1 (w|u, ipt, pct)α (4.3)

ip0(w) =
1

|W |
(4.4)

ipt(w) = LWORD:t
1 (w|u, ipt−1, pct) (4.5)
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4.2.2 Effect of incrementality

Incrementality, while an excellent way to explore the space of possible pragmatic utterances, has its limita-

tions. In particular, it can result in an overeagerness to be informative on the part of SSNT-IP
1 . As an example,

suppose that the caption “The bus is yellow.” is preferable to “Yellow is the bus” on grounds of linguistic nat-

uralness. If SWORD
0 encodes this preference, SSNT-IP

1 will inherit it too, but supposing that its target is a yellow

bus, and the only other image in W is a red bus, it will also be compelled to begin its caption with yellow.

More generally, while beam search allows lookahead of a kind, it is not a solution to the SWORD
1 ’s inherent

preference for local informativity. This is an intrinsic consequence of incremental pragmatic reasoning (see

chapter 3 for discussion of evidence for comparable human behavior).

Despite this drawback, it is possible to establish some simple commonalities between SSNT-GP
1 and SSNT-IP

1 .

Given a state w, call an utterance u weakly informative if LSNT
1 (w|u) ≥ 1

|W | , where W is the set of possible

states. In other words, given u, the literal listener LSNT
1 will guess the correct state with probability at least at

chance (when costs are 0). We note that the utterance u∗w obtained by greedy unrolling at each step of gener-

ation is weakly informative. To see this, observe that the nth word of u∗w is argmaxwordS
WORD
 (word|w =

r, c = u∗w[: n]). Since at each step SWORD
1 produces a word which, at worst, does not rule out any states for

LWORD
1 , the resulting sentence u∗ at worst gives LSNT

1 (w|u∗w) ≥ 1
|W | . In other words, greedily unrolling the

incremental speaker will produce an utterance which is at least as informative as chance.

This result suggests that the strategy of choosing the most informative word (or syntactic unit) at each point

in the generation of an utterance can be used as a substitute for choosing, from all utterances, the one which

is most informative. Whether it is actually a substitute that works well, or reproduces human behavior is a

question returned to in section 4.3.

4.2.3 Character level incrementality

As well as reasoning incrementally on the level of words, it is possible to do so on the level of characters.

This possibility arises in the context of a character level recurrent network (Chung et al., 2016), where each

successive character, rather than word, is determined by the previous sequence of characters. Despite the

intuition importance of words as linguistic units, character level models are able to produce grammatical

expressions, suggesting that they are capable of learning linguistic structure. The practical advantage of

character level pragmatics is that U is much smaller (≈30 vs. ≈20, 000), making the ensuing RSA model

much more computationally efficient, and allowing a larger beam search. Because of the way SSNT-IP
1 is

defined, no conceptual effort is required in changing from characters to words.

However, it is not a-priori obvious that incremental reasoning on the level of characters should yield anything

comparable to global informativity, given the distinctions between SSNT-GP
1 and SSNT-IP

1 discussed above.
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Figure 4.3: Captions for the target image (in green).

4.3 Evaluating pragmatic image captioning

I now describe experiments evaluating the use of SSNT-IP
1 in the domain of image captioning. These experi-

ments are conducted both for word level and character level CNN-LSTM models.

Figure 4.3 shows an example of an S0 and S1 character level caption for a target image in the context of

a set of images W . Qualitatively, we see that S1 produces an unambiguous caption, while S0 produces

an ambiguous one. This suggests that even at the level of characters, the preference for pragmatic choices

yields caption level informativity. This behavior, if robust across examples, is both surprising and desirable,

since it suggests that informative language can be produced without consideration of caption level alternative

utterances.

The informativity of a caption can be measured by playing the reference game implicit in the referential

caption generation task: is a listener able to recover the speaker’s intended target? This is the form of

evaluation we undertake.

To this end, a listener Leval(image|caption) ∝ PSSNT
0

(caption|image) is defined, where

PSSNT
0

(caption|image) is the total probability of S0 incrementally generating caption given image. In other

words, Leval is just the global listener which uses Bayes’ rule to obtain from SSNT
0 the posterior probability

of each image w given a full caption u.

The neural SWORD
0 used in the definition of Leval must be trained on separate data to the neural SWORD

0 used

for the SSNT-IP
1 model which produces captions, since otherwise this SSNT-IP

1 production model effectively has

access to the system evaluating it. As Mao et al. (2016) note, “a model might ‘communicate’ better with

itself using its own language than with others”. In evaluation, the training data is therefore divided in half,

with one part for training the SWORD
0 used in the caption generation model SSNT-IP

1 and one part for training

the SWORD
0 used in the caption evaluation model Leval.

We say that the caption succeeds as a referring expression if the target has more probability mass under the

distribution Leval(image|caption) than any distractor. In other words, if the system makes a hard choice by
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choosing the most probable referent, it succeeds when it guesses the correct referent.

To summarize, the success of SSNT-IP
1 at being informative is measured in the natural way: by the ability of a

listener (here a separately trained neural agent, but potentially a human) to pick the intended target image out

of W .

Dataset I train the production and evaluation models on separate sets consisting of regions in the Visual

Genome dataset (Krishna et al., 2017) and full images in MSCOCO (Lin et al., 2014). This is carried out both

for a character-level and a word level model, to allow for comparison between the two. Both datasets consist

of over 100,000 images of common objects and scenes. MSCOCO provides captions for whole images, while

Visual Genome provides captions for regions within images.

The test sets consist of clusters of 10 images. For a given cluster, each image in it is set as the target, in turn.

Two test sets are used. Test set 1 (TS1) consists of 100 clusters of images, 10 for each of the 10 most common

objects in Visual Genome.5

Test set 2 (TS2) consists of regions in different Visual Genome images whose ground truth captions have

high word overlap, an indicator that they are similar. We again select 100 clusters of 10. Both test sets have

1000 items in total (10 potential target images for each of 100 clusters).

Hyperparameters I use a beam search with width 10 to produce captions, and a rationality parameter of

α = 5.0 for the S1.

4.3.1 Results

As shown in Table 3.7, the character-level S1 obtains higher accuracy (68% on TS1 and 65.9% on TS2) than

the S0 (48.9% on TS1 and 47.5% on TS2), demonstrating that S1 is better than S0 at referring.

Advantage of Incremental RSA 66% percent of the times in which the S1 caption is referentially suc-

cessful and the S0 caption is not, for a given image, the S1 caption is not one of the top 50 S0 captions, as

generated by the beam search unrolling at S0. This means that in these cases the non-incremental method

discussed in section 4.2 could not have generated the S1 caption, if these top 50 S0 captions were the support

of the prior over utterances. This is an indication of the value of incremental pragmatic reasoning, but more

systematic experimentation would be valuable here.

5Namely, man, person, woman, building, sign, table, bus, window, sky, and tree.
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Model TS1 TS2

Char S0 48.9 47.5
Char S1 68.0 65.9
Word S0 57.6 53.4
Word S1 60.6 57.6

Table 4.1: Accuracy on both test sets.

Comparison to Word-Level SSNT-IP
1 I compare the performance of the character-level model to a word-

level model.6 It is evaluated with an Leval model that also operates on the word level.

Though the word S0 performs better on both test sets than the character S0, the character S1 outperforms the

word S1, demonstrating the advantage of a character-level model for pragmatic behavior.

Variants of the Model I further explore the effect of two design decisions in the character-level model.

First, I consider a variant of S1 which has a prior over utterances determined by an LSTM language model

trained on the full set of captions. This achieves an accuracy of 67.2% on TS1. Second, I consider our stan-

dard S1 but with unrolling such that the L0 prior is drawn uniformly at each time step rather than determined

by the L0 posterior at the previous step. This achieves an accuracy of 67.4% on TS1. This suggests that

neither this change of S1 nor L0 priors has a large effect on the performance of the model.

4.3.2 Shortcomings of the current approach

The integration of SSNT-IP
1 with a neural sequence model is an exciting step towards marrying theoretical

models of linguistic behavior with statistical models capable of handling some of the complexity of real data.

Three shortcomings of the present approach are that the set of states W is small, leading to language which

distinguishes the referents but is inaccurate, that W has to be explicitly specified, whereas ideally our model

would also supplyW and PL automatically, and that using images as representations of states is cumbersome

when we want fine-grained control over states.

I now discuss these three problems in more detail, with the aim of motivating the shift to a domain where a

simultaneous solution to all three is possible.

Problem 1: Strange behavior when W is small The goal of S1 (whether SSNT-IP
1 or SSNT-GP

1 ), in the

context of image captioning, is to being informative in the sense of distinguishing the target image from the

other images in W . In the case where W consists of very few, say two, images, and the rationality parameter

6Here, we use greedy unrolling, for reasons of efficiency due to the size of U for the word-level model, and set α = 1.0 from tuning
on validation data. For comparison, we note that greedy character-level S1 achieves an accuracy of 61.2% on TS1.
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α is high, the S1 is compelled to be informative at the cost of producing accurate or natural captions. For

example, it might be the case that R1 in figure 4.1 induces a neural image captioner S0 to produce “brick” as

a caption with a much higher probability than it has to produce “brick” for R2. The consequence of this fact

is an ensuing desire in S1 to say “brick”, even though in absolute terms, “brick” has low probability under

SSNT
0 for either R1 or R2.

One way of interpreting the problem here is that S1 never has to worry about mistakenly communicating to

their imagined listener that their target image is a brick. This is because neither of the images in W are in

fact bricks. If a third image of a brick were added to W , producing “brick” as an S1 caption for R1 would

suddenly lose almost all of its probability.

In other words, S1 only cares about being informative up to the uncertainty of its imagined listener, and if

this uncertainty is constrained to a very specific set of hypotheses, there can be strange consequences for the

behavior of S1. This problem bears a resemblance to the idea of a question under discussion or projection,

as discussed in chapter 2; an overly small set of states can be seen as a too-coarsely grained partition over

possible worlds.

A natural way to address this problem is to make the state space W larger, so that it contains images corre-

sponding to a larger set of possible captions. If PL consequently put some probability mass on a huge variety

of possible images, the problem would be alleviated: the informativity of “brick” for conveying R1 over R2

would be counteracted by its much greater informativity for some Rn, containing an actual brick.

Problem 2: The need for explicitly specified states If our aim is to model human linguistic behavior

in the domain of image captioning, the artificial setting of a reference game, in which a set W of a target

and accompanying distractors are selected by hand, is limited. One particular limitation that has not been

addressed so far is that an explicit set of distractor images needs to be provided. Or to pose the problem more

generally, a prior PL, giving both a set of distractors and according probabilities must be provided. So far,

we supplied the distractors manually, and took the distribution over them to be uniform.

Ideally, we would want to be able to produce this distribution automatically, so that given a single image, a

system can produce a caption which is informative in the sense of distinguishing the target image from these

distractors.

In theory, this distribution could contain very rich information. For example a human captioner knows that

it is unlikely that grass is any other color than green, and so that it is unnecessary to stipulate it is green -

doing so has little utility in informing an interlocutor. As another example, when describing the image in

figure 4.4, I might say A bus without a driver. I choose to mention this detail, instead of saying A bus with

round wheels precisely because the former is much more surprising under a distribution over natural images,

or alternatively, much more surprising under a distribution over states of the world. Equivalently, choosing
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Figure 4.4: Image of a driverless electric bus on a road.

this detail gives the listener a high probability of being able to recover the image I want to communicate (or

the state of the world this image corresponds to).

One appealing solution is to use a neural model to provide this distribution. For example, a variational

autoencoder can explicitly learn a distribution over images, which could be used as PL. Taking this approach

would even remove the need to explicitly specify a set of images W , since in this case, W would be the space

of all possible images (of a certain size), each assigned a probability by PL. Note that this also addresses

problem 1, since a continuous distribution like this would not be unnaturally restricted.

The drawback of this approach is that probabilistic generative models of images, while an active area of re-

search, are not (at the time of writing) able to produce particularly high quality images, outside of constrained

domains like digit or face generation. It is therefore unclear whether pursuing this approach would yield good

results. Furthermore, computing the posterior given a continuous prior of this form would be a challenging

endeavor.

Problem 3: The awkwardness of images as representations of states In the current approach, images

act as a stand-in for states of the world. In other words, the visual information present in an image is what

determines the internal representation fed to the recurrent neural network, and so, is what determines what

language is produced.

If we want to control the language a captioning system produces, we therefore have to change the input. For

example, to get our system to describe a state of the world in which a bus is driving off a cliff, we would need

to first obtain an image of that scenario.

Resolving these problems by recourse to a new domain Viewed from the perspective of a reference game,

translation is a setting where W consists of source language sentences, and U consists of target language

translations. A speaker model produces a translation given a sentence in the source language, and a listener,

symmetrically, produces a source language translation given a target language sentence. As discussed in
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section 4.4, there is an intuitive use case for an S1 model in the context of such a reference game, to provide

translations which preserve semantic distinctions in the source language.

With respect to problem 3, having sentences as states offers an immediate solution. Rather than having to

find or create an image which represents some particular state of the world, we can simply describe that state

by a natural language expression in the source language.

Moreover, in section 4.5 I will show that we can exploit the fact that translation is feasible in both directions

(source to target language, and target to source language) to provide an informative translation model which

does not require the explicit specification of a set of distractors or a prior over them. This will avoid the

problems incurred by having a small set of manually specified states (problems 1 and 2). Further, I show that,

when implemented with an efficient inference algorithm, this approach improves both cycle-consistency and

translation quality measured by standard metrics.

4.4 Translation

Languages differ in what meaning distinctions they must mark explicitly. As such, translations risk mapping

from a form in one language to a more ambiguous form in another. For example, the definite (4.6) and

indefinite (4.7) both translate (under Fairseq and Google Translate) to (4.8) in French, which is ambiguous

in definiteness.

That is, English always distinguishes between definite and indefinite nouns (by the presence or absence of

a determiner) whereas in many Romance languages, like French, a noun without a determiner can be either

definite or indefinite.

The animals run fast. (4.6)

Animals run fast. (4.7)

Les animaux courent vite (4.8)

More generally, when viewed as a function from a set of source language sentences to the set of target

language sentences, state-of-the-art translation systems are not injective (one-to-one). There is no reason to

think that translation should be one-to-one, or even a well defined function (i.e. having a unique translation for

each input sentence), particularly at the level of sentences, where contextual information that is not explicitly

present in the sentence may be critical for determining the translation.

However, there are practical situations in which it may be desirable to avoid a particular ambiguity. In
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the above English sentences and translation, for instance, the French sentence does not convey whether a

definite group of animals is being referred to, or whether instead the sentence is meant in a generic sense.

If this distinction was important in the original English sentence, its absence from the translation might be

undesirable.

A symptom of many-to-one translation is loss of cycle-consistency. Formally, say that a pair of functions

f : A → B, g : B → A is cycle-consistent (i.e. is an isomorphism) if g · f = id, the identity function.

If f is not one-to-one, then (f, g) is not cycle-consistent.7 For the case of translation, this equates to the

ability of a translation system from target language to source language to recover the original sentence from

its translation. When two sentences are mapped to one, they cannot both be restored with a target-source

translator to their respective original sentences: information has been lost.

4.4.1 Avoiding many-to-one translation

While languages differ in what distinctions they are required to express, all are usually capable of expressing

any given distinction when desired. As such, meaning loss of the kind discussed above is, in theory, avoidable.

Instantiating the informative speaker model of RSA in the domain of translation provides a natural way to

encourage a trained translation system to produce translations which distinguish the source language sentence

from distractors, and so, to avoid many-to-one mappings. That is, we play a reference game in which the states

are a finite setW of source language sentences (such as the pair 4.6 and 4.7) and the utterances are the infinite

set of target language utterances U .

To use SSNT-IP
1 , we specify a set of distractor sentences in the source language, of which one is the target, and

proceed almost exactly as in the case of image captioning, using beam search to decode from SSNT-IP
1 as an

approximation of SSNT-GP
1 .

As an example of the behavior of the system, figure 4.5 shows the SSNT
0 and SSNT-IP

1 translations for sentences

A and B which jointly compose the set of states (W = {A,B}). The key property of this model is that, for

W = {A,B}, when translating A, SSNT-GP
1 prefers translations of A that are unlikely to be good translations

of B. So for pairs like (4.6) and (4.7), SSNT-GP
1 is compelled to produce a translation for the former that

reflects its difference from the latter, and vice versa. For the French example above, SSNT-IP
1 ’s translation of

(4.6) when W = {(4.6), (4.7)} is “Ces animaux courent vite” (These animals run fast.).

The examples here are from only two European languages and the evaluation in section 4.6 is only for

German. However, the technique is general to any language pair. Exploration of more distant language

pairs is a valuable topic for future research.

7Note however that when A and B are infinite, the converse does not hold: even if f and g are both one-to-one, (f, g) need not be
cycle-consistent, i.e. f ◦ g need not be the identity. Consider, for example, the case where f(x) = g(x) = 2x. f and g are bijections
on the reals, but e.g. f(1) 6= 1.
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A He is wearing glasses.
B He wears glasses.
SSNT

0 (A) Er trägt eine Brille.
SSNT

0 (B) Er trägt eine Brille .
SSNT-IP

1 (A) Er trägt jetzt eine Brille.
SSNT-IP

1 (B) Er hat eine Brille.

Figure 4.5: Similar to Figure 4.1, SSNT
0 collapses two English sentences into a single German one, whereas

SSNT-IP
1 distinguishes the two in German.

4.4.2 When is translation many-to-one?

It is natural to wonder how often many-to-one translations occur. To explore this question for a single lan-

guage pair, I create a corpus of 500 pairs of distinct English sentences which map to a single German one

(the evaluation language in section 4.6). This is done by selecting short sentences from the Brown corpus

(Francis and Kucera, 1964), translating them to German, and taking the best two candidate translations back

into English, if these two themselves translate to a single German sentence. Translation in both directions

was done with Fairseq. I identify a number of common causes for the many-to-one maps. Two frequent

types of verbal distinction lost when translating to German are tense (54 pairs, e.g. “...others {were, have

been} introduced .”) and modality (16 pairs, e.g. “...prospects for this year {could, might} be better.”), where

German “können” can express both epistemic and ability modality, distinguished in English with “might” and

“could” respectively. Owing to English’s large vocabulary, lexical difference in verb (31 pairs, e.g. “arise”

vs. “emerge” ), noun (56 pairs, e.g. “mystery” vs. “secret”), adjective (47 pairs, e.g. “unaffected” vs.

“untouched”) or deictic/pronoun (32 pairs, usually “this” vs “that”) are also common.

While the dataset is by no means representative, since only differences that appear in the beam of a German-

English translator are observed, it reveals some common classes of distinction English makes more than

German. The most common pairwise differences are lexical (220), either by choice of verb (e.g. “arise” vs.

“emerge” ), noun (e.g. “mystery” vs. “secret”), adjective (e.g. “unaffected” vs. “untouched”), adverb (e.g.

“seldom” vs. “rarely”) or deictic/pronoun (very commonly “this” vs “that”). A large number of the pairs

differ instead either orthographically, or in other ways that do not correspond to a clear semantic distinction

(e.g. “She had {taken, made} a decision.”). 29 differ by the presence or absence of a determiner (e.g. “This

makes (the) order of entries variable.”).

English has a particularly large lexicon, so it is unsurprising that distinctions between lexical items (a differ-

ence in a single noun, for example) will often be lost. While a large number of differences are lexical , certain

semantic distinctions, in particular tense and modal force, consistently occur.
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4.5 Generalizing to an unbounded state space

While SSNT-IP
1 can disambiguate between pairs of sentences, it has two shortcomings. First, it requires one (or

more) distractors to be provided, so translation is no longer fully automatic. Second, because the distractor

set W consists of only a pair (or finite set) of sentences, SSNT-IP
1 only cares about being informative up to the

goal of distinguishing between these sentences. This mirrors the problem discussed in section 4.3.2, where

an image caption is inaccurate because the goal of being informative outweighs the probabilistic preference

for true captions.

In section 4.3.2, I conjectured that by expanding W , this problem could be lessened. I proposed an extreme

version, in which W was the set of all images, and PL a neurally learned distribution over them. This was

judged to be infeasible, due to the difficulty of generating natural images (although versions for simpler

domains, like MNIST) are conceivable.

However, in the domain of translation, a distribution over W is easy to obtain. In particular, a translator

from target to source language constitutes a conditional distribution P (w|u). Using the convention that a 0

index refers to a model with no explicit pragmatic reasoning, I term such a target-source translation model

LSNT
0 (w|u). With that, we can introduce a simple variation of the informative speaker, SSNT-CGP

1 (for “cyclic

global pragmatics”), as follows:

SSNT-CGP
1 (u|w) ∝ SSNT

0 (u|w)LSNT
0 (w|u)α (4.9)

What does this mean? First note that LSNT
1 , which previously performed Bayesian inference to obtain a

posterior distribution over a finite set W of source language sentences has been replaced by a neural model

LSNT
0 , which is a distribution over an infinite set of source language sentences.

It is also worth emphasizing that the listener/speaker terminology has no conceptual significance in this

setting, other than to remain consistent with other applications of RSA. SSNT
0 and LSNT

0 are symmetric - we

could just as well switch their names.

The resulting behavior is that, given a source sentence w, SSNT-CGP
1 prefers translations u which have high

probability under SSNT
0 , but also are likely to be recovered, in the sense of causing LSNT

0 to have high proba-

bility of producing translation w when given u.

SSNT-CGP
1 is like SSNT-GP

1 , but its goal is to produce a translation which allows a listener model (now LSNT
0 ) to

infer the original sentence, not among a small set of presupplied possibilities, but among all source language

sentences. As such, an optimal translation u of w under SSNT-CGP
1 has high probability of being generated by

SSNT
0 , high probability of being translated back to w by LSNT

0 and consequently, lower probability of being

translated to any other sequence of English words. SSNT-CGP
1 is very closely related to reconstruction methods,
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e.g. (Tu et al., 2017), and conceptually related to uses of a cyclic loss in non-linguistic domains, e.g. (Zhu

et al., 2017).

Intuitively, total meaning preservation is achieved by a translation which distinguishes the source sentence w

from every other sentence in the source language which differs in meaning. The result, for sufficiently high

values of α, is an injective map from source to target language. Note, of course, that this injective map may

correspond to nonsense translations: as before, raising α too high results in a preference for informativity

over quality.

4.5.1 An incremental inference algorithm for SSNT-CGP
1

Exact inference is again intractable, though as with SSNT-GP
1 , it is possible to approximate by subsampling

from SSNT
0 . This is very close to the approach taken by Li and Jurafsky (2016), who find that reranking a set

of outputs by probability of recovering input “dramatically decreases the rate of dull and generic responses.”

in a question-answering task. However, because the subsample is small relative to U , they use this method in

conjunction with a diversity increasing decoding algorithm.

As in the case with explicit distractors, we instead opt for an incremental model, now SSNT-CIP
1 which approx-

imates SSNT-CGP
1 . The definition of SSNT-CIP

1 (4.11) is more complex than the incremental model with explicit

distractors (SSNT-IP
1 ) since LWORD

0 must receive complete sentences, rather than partial ones like LWORD
1 . As

such, we need to marginalize over continuations k of partial sentences in the target language:

SWORD-C
1 (wd|w, c) ∝ SWORD

 (wd|w, c)·∑
k

(LSNT
0 (w|c+ wd+ k)SSNT

0 (k|w, c+ wd)) (4.10)

SSNT-CIP
1 (u|w, c) =

∏
t

SWORD-C
 (u[t]|w, c+ u[: t]) (4.11)

Since the sum over continuations of c in (4.10) is intractable to compute exactly - it is a sum over all possible

continuation sequences, we approximate it by a single continuation, obtained by greedily unrolling SSNT
0 .

The whole process of generating a new word wd of the translation from a sequence c and a source language

sentence w is as follows: first use SWORD
0 to generate a set of candidates for the next word (in practice,

we only consider two, for efficiency). For each of these, use SSNT
0 to greedily unroll a full target language

sentence from c+ wd, namely c+ wd+ k, and rank each wd by the probability LSNT
0 (w|c+ wd+ k).

The following pseudocode resembles the Python code8 implementing SWORD-C
1 . In practice, we fix WIDTH=2:

8Note the use of Python indexing conventions, and Numpy (numerical Python) broadcasting.
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d e f S1−WD−C . fwd ( s r c =s , c = [ ] ) :

s u p p o r t , l o g p r o b s = S0−WD. fwd ( s )

s c o r e s = [ ]

f o r wd i n s u p p o r t [ : WIDTH ] :

e x t =S0−SNT . fwd ( s r c =s , c=c +[wd ] )

sc =L0−SNT . l o g p r o b ( t g t =s , s r c = e x t )

s c o r e s . append ( sc )

unnorm= l o g p r o b s + s c o r e s

n e x t w o r d = s u p p o r t [ argmx ( unnorm ) ]

r e t u r n n e x t w o r d

d e f S1−SNT−CPG . fwd ( s r c =s , c = [ ] ) :

n e x t w o r d = None

o u t = [ ]

w h i l e n e x t w o r d =!STOP TOKEN :

s u p p o r t , l o g p r o b s = S0−WD. fwd ( s )

s c o r e s = [ ]

f o r wd i n s u p p o r t [ : WIDTH ] :

e x t =S0−SNT . fwd ( s r c =s , c=c +[wd ] )

s=L0−SNT . l o g p r o b ( t g t =s , s r c = e x t )

s c o r e s . append ( s )

unnorm= l o g p r o b s + s c o r e s

n e x t w o r d = s u p p o r t [ argmx ( unnorm ) ]

o u t . append ( n e x t w o r d )

r e t u r n o u t

An example of the behavior of SSNT-CIP
1 and SSNT

0 on a sentence from the test set we use for evaluation (see

section 4.6) is shown below; SSNT
0 is able to preserve the phrase “world’s eyes”, which SSNT

0 translates merely

as “world”:

• Source sentence: Isolation keeps the world’s eyes off Papua.

• Reference translation: Isolation hält die Augen der Welt fern von Papua.

• SSNT
0 : Die Isolation hält die Welt von Papua fern.

• SSNT-CIP
1 : Die Isolation hält die Augen der Welt von Papua fern.

Efficiency SSNT-CIP
1 is much less than SSNT-IP

1 , for the reason that at each time step of the production of a

sentence, it is necessary to greedily extend a partial sequence in the target language into a full sentence, and to



CHAPTER 4. INFORMATIVE LANGUAGE GENERATION 83

translate it back into the source language. As such, this is not intended as the basis for a practical translation

system. Rather, it is intended to show that cycle-consistency is important for translation, and should be taking

into account in the design of real-world systems.

4.6 Evaluating SSNT-CIP
1

The method of evaluation used for SSNT-IP
1 in the domain of image captioning was to measure the accuracy

of a separately trained listener model at recovering the intended referent. Similarly for SSNT-CIP
1 , we can

measure cycle-consistency, the ability of a separately trained model to recover the original sentence. I view

cycle-consistency as an indirect measure of meaning preservation, since the ability to recover the original

sentence requires meaning distinctions not to be collapsed.

As with the evaluation of image captioning in section 4.3, in evaluating cycle-consistency it is important

to use a separate target-source translation mechanism than the one used to define SSNT-CIP
1 . Otherwise, the

system has access to the model which evaluates it and may improve cycle-consistency without producing

meaningful target language sentences. For this reason, we translate German sentences (produced by SSNT
0 or

SSNT-CIP
1 ) back to English with Google Translate. To measure cycle-consistency, we use the BLEU metric

(implemented with sacreBLEU (Post, 2018)), with the original sentence as the reference.

However, this improvement of cycle consistency, especially with a high value of α, may come at the cost of

translation quality. Moreover, it is unclear whether BLEU serves as a good metric for evaluating “translation”

of sentences when the source and target language are the same. To further ensure that translation quality is

not compromised by SSNT-CIP
1 , we evaluate BLEU scores of the German sentences it produces. This requires

evaluation on a corpus of aligned sentences, unlike the sentences collected from the Brown corpus in section

4.4.29.

Note that this method of evaluation was not possible for the use of SSNT-IP
1 in the context of image captioning,

since there was no expectation that the captions generated would resemble the reference captions, which were

produced without the goal of distinguishing the target image from an explicitly specified set of distractors.

We conduct our evaluations on English to German translation, making use of publicly available pre-trained

English-German and German-English Fairseq models.

We perform both evaluations (cycle-consistency and translation) on 750 sentences10 of the 2018 English-

German WMT News test-set.11 We use greedy unrolling in all models (using beam search is a goal for

future work). For α (which represents the trade-off between informativity and translation quality) we use 0.1,

9While we find that SSNT-CIP
1 improves cycle-consistency for the Brown corpus over SSNT

0 , we have no way to establish whether this
comes at the cost of translation quality.

10Our implementation of SSNT-CIP
1 was not efficient, and we could not evaluate on more sentences for reasons of time.

11http://www.statmt.org/wmt18/translation-task.html
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Model Cycle Translate

SSNT
0 43.35 37.42
SSNT-CIP

1 47.34 38.29

Table 4.2: BLEU score on cycle-consistency (c) and translation (t) for WMT, across baseline and informative
models. Greedy unrolling and α = 0.1

obtained by tuning on validation data. Note that this is a low value compared to what was used for the image

captioning system.

Results As shown in table (4.2), SSNT-CIP
1 improves over SSNT

0 not only in cycle-consistency, but in transla-

tion quality as well. This suggests that the goal of preserving information, in the sense defined by SSNT-CGP
1

and approximated by SSNT-CIP
1 , is important for translation quality.

4.7 Discussion

The achievement of this chapter was to take the incremental model of pragmatics proposed in chapter 3, in

particular the model of informative language production SSNT-IP
1 , and apply it to natural language generation

tasks (image captioning and translation) where incrementality serves as a way to overcome the intractability

inherent in reasoning over an infinite set of possible utterances.

In most of these cases, I considered a definition of the informative speaker SSNT-GP
1 in terms of a model LSNT

1

which has a uniform prior over an explicitly specified set of imagesW , and performs Bayes rule with SSNT
0 as

the likelihood. SSNT-IP
1 then constitutes an acceptable approximation of SSNT-IP

1 , as shown by the evaluations

in 4.3.

A surprising finding of the application of incremental pragmatics (i.e. the use of SSNT-IP
1 in place of SSNT-GP

1 )

was that not only did character level incrementality produce globally informative language, but that it pro-

duced better results than word level incrementality. It is hard to say why this is; one likely reason is that the

small number of characters (∼ 60) allowed for a wider beam search. Intuitively, the character level model

allows for the exploration of more paths before committing to a single one.

A natural question this raises is whether there is a possibility of achieving improved results by choosing

a level of incrementality between the word and character level. The word piece segmentation used in the

models explored in section 4.4 is one example. More generally, it might well be the case that an optimal

unrolling strategy is to choose certain parts of the sentence in which to increase or decrease the granularity of

incrementality, according to heuristics.
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In section 4.5 I considered a second model, SSNT-CGP
1 which instead of reasoning about LSNT

1 , reasons about

a neural model LSNT
0 . This approach removes the need for a hand-chosen distractor set W , since LSNT

0 is a

distribution over all source language sentences. SSNT-CIP
1 is then an approximation to SSNT-CGP

1 . Unlike back-

translation to augment data during training (Sennrich et al., 2015), our model uses pretrained translators.

Models of this variety differ in an important way from standard RSA models. While standard models have

a single “base case”, i.e. an agent L0 or S0 which ends the nesting of agents reasoning about each other,

there are now two base cases12, a listener and a speaker. Previously, we viewed the semantics as S0, now it is

separated into two components.

The apparent success of SSNT-CIP
1 on improving translation quality on a pair of two fairly similar languages

raises the question of whether improvements will increase for more distant language pairs, in which larger

scale differences exist in what information is obligatorily represented - this is a direction for future work.

A broader kind of extension to the work proposed in this chapter concerns richer models of pragmatics;

SSNT-GP
1 is a very simple model, but the whole attraction of integrating Bayesian pragmatics with neural

models is the possibility of the complex reasoning patterns seen in idealized models being extended to real

data.

For instance, integrating a neural model with a Bayesian pragmatic model of figurative language (Kao et al.,

2014b), question asking (Hawkins et al., 2015), or focus (Bergen and Goodman, 2015b) has the potential to

yield a model capable of generating much more controlled language. The takeaway message of the chapter

should therefore be that the unbounded utterance space is not a serious barrier to the implementation of more

complex models.

12I use the term base case slightly misleadingly here since the listener and speaker agents in question are not defined recursively in
the present setting. However, one can easily do so, by defining Ln in terms of Sn and Sn in terms of Ln−1. Then the term base case
applies accurately.



Chapter 5

A Unified Perspective

This dissertation builds on a perspective in which the intuitions about pragmatics laid out by Grice (1975),

and the notion of a convention proposed by Lewis (1969) are formalized in probabilistic models of nested

reasoning between a speaker and a listener, known as the Rational Speech Acts framework (RSA).

Under this perspective, the meaning of an utterance corresponds to the belief (i.e. distribution over states)

that it induces in a listener. The literal meaning corresponds to the belief induced in an agent who does not

reason about their interlocutor, by contrast to the pragmatic meaning, which is the belief of an agent who

does, and moreover assumes that their interlocutor is reasoning about them.

This perspective on meaning is compatible with a truth-conditional semantics, which can appear in the def-

inition of the literal listener, although it does not require it. It makes a clear distinction between meaning

inherent in an utterance (from the semantics), meaning derived from the context (prior knowledge, present al-

ready in the literal listener L0), and meaning derived from Gricean reasoning (only present in L1 and higher).

Furthermore, it captures the notion of a convention as the information that the Sn assumes that the Ln−1
assumes Sn−1 assumes . . . that L0 knows. As the depth of nested reasoning tends to infinity, this converges

to common knowledge, which can be seen as the theoretical characterization of convention.

What is nice about this vision is that it unifies several diverse perspectives on meaning. In particular, the

logical notion of meaning developed by Tarski (1983) and adapted for natural language by Montague (1973)

is united with the probabilistic viewpoint of a meaning as a distribution over states of the world, and the

understanding of a language user as a Bayesian agent.

What this dissertation adds to the story The contribution of this dissertation is to show how RSA models

behave when the state space W and the utterance space U have richer structure than just being sets of states

and linguistic expressions respectively. Chapter 2 shows how the additional structure of a vector space plays

86



CHAPTER 5. A UNIFIED PERSPECTIVE 87

nicely with a model capable of handling figurative language, LQ
1 , with the elegant consequence that questions

under discussion amount to linear projections. Chapter 3 shows how a recursively generated utterance space

U allows for pragmatic reasoning to be factored, so that pragmatics takes place at the level of words.

In both cases, performing inference efficiently is a challenge, but not an intractable one. A Gaussian formula-

tion of a vector space semantics allows for a closed form solution to L0, while LQ
1 itself can be approximated

tractably as a result of the projection of w onto a subspace corresponding to a projection q. In the case of

SSNT-GP
1 , the sequential structure of U allows for an approximation, SSNT-IP

1 , which I propose as a cognitively

more realistic model of informative language generation (chapter 3).

These theoretical contributions are what enable the more practical contribution of the dissertation, of scaling

RSA models to open domain natural language. The interpretation of LQ
1 over a vector space W allows it to

be applied to a semantics defined in terms of word vectors. As a consequence, it is possible to apply RSA

to arbitrary adjective-noun phrases, yielding both an NLP tool and a means of validations LQ
1 as a model

of non-literal language interpretation. Similarly, the incremental approach to informativity, made possible

when utterances u ∈ U are sequences of words, allows for the application of S1 (in particular, SSNT-IP
1 ) to the

natural language generation tasks of image captioning and translation (chapter 4).

In the course of addressing these theoretical and practical challenges, several questions emerge, which I’ll

consider in turn.

• Across the dissertation, several variations of the RSA framework have emerged, as dictated by the

needs of each situation. What lessons can be taken away about the general architecture, particularly as

concerns the “literal” speaker S0 and listener L0?

• What do the Bayesian models of pragmatics discussed in this dissertation have to tell us about what a

semantics should look like?

• Chapters 2 and 4 share the approach of taking a pretrained statistical model and using it as a seman-

tics. How viable is it to jointly learn a model (either a word embedding as in chapter 2 or an image

captioning or translation model as in chapter 4) and perform pragmatic reasoning? What would this

gain us?

• Both in the application of the vectorial LQ
1 to adjective-noun phrases, and the design of SSNT-IP

1 and

SSNT-CIP
1 , pragmatic reasoning takes place before the computation of full sentences. Is there a meaning-

ful sense in which we can talk of a compositional pragmatics?

• The alternative utterance set: the set of utterances available as alternatives has been a point of contro-

versy for Gricean theories of pragmatics over several decades (Katzir, 2007). What sort of theory does

the approach taken in chapter 4 — namely to consider all words at each timestep as alternatives —

correspond to? Is this a way to resolve the tension between grammaticalized and Gricean theories of
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implicature?

• What is the natural next step in this research program? How can we build on the successful elements

of the work presented here?

5.1 The architecture of Bayesian models of pragmatics

Chapter 1.1.2 outlines a number of choice points in the vanilla Rational Speech Acts model. Some are

subsumed in existing parameters (for example, the effects of introducing a cost term amount to little more than

the utterance prior) while others (like the rationality parameter α) do not change the fundamental dynamic of

the model, but increase the strength of certain effects.

However, other architectural choices seem meaningful but arbitrary. In particular, why choose to begin the

series of nested of speaker and listener models with L0 rather than S0? In the application of S1 to language

generation using neural models, it was clear that an S0 was the preferred starting point, since it corresponds

to the form of a neurally trained conditional language model. However, in the application of LQ
1 to language

interpretation, it turned out to be more straightforward to have an L0.

There is a generalization of the S0 first and L0 first versions of the vanilla RSA model, which involves both

L0 and S0, shown as follows:

(24) Ln(w|u) ∝ Sn−1(u|w) · L0(w|u)

(25) Sn(u|w) ∝ Ln−1(w|u) · S0(u|w)

If we define S0 and L0 with the same semantics and respective uniform priors (as in equations 26 and 27),

we obtain something equivalent to the vanilla RSA model sketched in chapter 1.1.1.

(26) L0(w|u) ∝ JuK(w)

(27) S0(u|w) ∝ JuK(w)

To make this identification, what is now L2 corresponds to L1 in the previous model: that is, L2 here is the

listener that reasons about a speaker who reasons about a literal listener. The change in the nth order listener

in 24 and nth order speaker in 25 is that their priors are defined in terms of L0 and S0 respectively. Note that

in this formulation, L1 and S1 are symmetric: substituting L for S changes from (24) to (25), and vice versa.

This symmetric variant of RSA is essentially the model used in the application of RSA to translation in chapter

4.5, although in that case, S0 and L0 do not have explicit semantics, but rather are neural models, and the

nesting extends only one level, to S1.
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What this symmetric RSA model allows for is the possibility of a separation of the conventional relation

between form and meaning (the semantics) into two parts, one coming from L0 and one from S0. This turned

out to be useful for practical purposes in chapter 4.5, allowing for an efficient approximation of a sentence

level informative speaker whose distractor set W is unbounded, but whether it is motivated from a theoretical

perspective is a question for future work.

5.2 The nature of the semantics

There are two different ways of characterizing a semantics for natural language. The first is that a semantics

is a logical relation between expressions u ∈ U and states w ∈ W (Montague, 1973). This is the sense of

semantics inherited from Tarski’s notion of a semantics in mathematical logic (Tarski, 1983).

The second notion is that the semantics is some function of U and W which is a convention, in the sense of

Lewis. In other words, the semantics is the relationship between states and expressions which is common

knowledge in a community of practice. Note that in this sense, all features of the base level listener L0 and

(optionally) speaker S0 are part of the conventional knowledge that language users have, including not only

the semantics, but the prior on states and utterances. I refer to these two notions of what a semantics is as the

Montagovian and Lewisian views, respectively.

The semantics in vanilla RSA is in line with both of these viewpoints. Ln assumes that Sn assumes that

Ln−1 . . . assumes that L0 has access to a relational semantics J·K. If the highest model is Ln for some n,

this logical semantics is nth order higher order knowledge, which becomes common knowledge as n tends to

infinity.

Mathematically speaking, the RSA framework only enforces the Lewisian view; in theory, there is no mathe-

matical reason to prevent the semantics itself being soft. For instance, one could replace the semantics used

to define L0 in 28 with any positive real valued function f(u,w) which assigns a score between 0 and 1 for

each pair of utterance u and state w, as in 29.

(28) L0(w|u) = JuK(w)·PL(w)∑
w′∈W JuK(w′)·PL(w′)

(29) L0(w|u) = f(u,w)·PL(w)∑
w′∈W f(u,w)·PL(w′)

This approach is taken in the application of LQ
1 to word embeddings in chapter 2. Another option is to forgo

a semantics altogether, and simply have S0 or L0 (or both) be conditional distributions, as in the neurally

parametrized distributions for S0 and L0 in chapter 4.

I view this flexibility, on the part of the RSA framework, as a good thing. While a logical semantics is appro-

priate for modeling many aspects of natural language meaning, for many others it is not. One such example
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is use-conditional meaning (Gutzmann, 2015), such as the meaning of sorry or ouch, where a probability

distribution P (u|w) describing which states are likely to cause which utterances seems far more appropriate

than a truth-conditional semantics. Similar concerns apply to sociolinguistic meaning, such as conventional

information about the social identities of speakers who use certain phonetic features. For both of these cases,

Qing and Cohn-Gordon (2018) present an RSA model grounded in a model S0(u|w) which represents use

conditions and conventional knowledge about which social identities produce which sociolinguistic markers

as a probability distribution. My view, therefore, is that probabilistic representations of a semantics are moti-

vated not only on practical grounds, but on theoretical ones, although in many settings, a logical semantics is

needed.

5.3 Jointly learning a semantics and reasoning about pragmatics

In chapter 2, the semantics takes the form of a word embedding, as discussed above. However, these em-

beddings are learned from large scale corpora in which language is used pragmatically. For example, the

vector
−−−→
shark is learned from data in which shark is used metaphorically. As noted in chapter 2, it should be

possible to learn word embeddings while taking into account pragmatic reasoning. For example, LQ
1 could,

in theory, perform a triply joint inference, over states w, projections q and the semantics itself, i.e. the word

embedding E. In practice, this would require a far more efficient inference algorithm than what is use in

chapter 2 for LQ
1 , and more importantly, would require a task, perhaps the neighboring word prediction task

on which Word2Vec is trained, against which the system could be trained.

An analogous consideration arises for the model considered in chapter 4, where the semantics takes the form

of a conditional probability distribution over utterances given states (parametrized by a neural net).

In the setting of neural architectures, where end-to-end learning is generally the favored approach, a salient

alternative is to view L1 and S1 as layers on top of the neural architecture, and train the model jointly by

backpropagating through the RSA layers. This is the approach pursued by Mao et al. (2016) for images, by

Monroe and Potts (2015) for idealized reference games, and by McDowell and Goodman (2019) for color

patch description, all using the subsampling approach to SSNT-GP
1 inference of Andreas and Klein (2016b).

The difficulty is that this requires a data set in which the observations are pairs of states (e.g. images) in

context and utterances. In other words, the model must be trained on data in which the set of distractor

images for each target image is provided. In Mao et al. (2016) for example, a special dataset is assembled for

this purpose. A further challenge is to train an end-to-end incremental model, and to investigate the nature of

the semantics which emerges in such an end-to-end system.

Models capable of inferring a semantics in this way are an important direction for future work: they allow

quantitative answers to the question: what must the conventional knowledge of the relationship between
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forms and meanings in a linguistic community be like in order to have produced the observed linguistic data?

Since this is the inferential task faced by humans in the real world, to infer the conventions of language

from data in which those conventions are not directly exhibited but rather give rise to pragmatic behavior,

attempting to handle this problem is a core part of scaling RSA.

5.4 Compositional pragmatics

The approach inherent in vanilla RSA, inherited from Grice and subsequent work in linguistics, is to view

pragmatics as a module which takes a fully formed semantic representation as an input. In other words,

whatever happens in the compositional semantics to assemble a sentence meaning is irrelevant to the ensuing

process of Gricean reasoning.

This assumption is challenged both by the application of LQ
1 to adjective-noun metaphors in chapter 2 and

the incremental models SWORD
1 and LWORD

1 proposed in chapter 3.

In the case of LQ
1 and adjective-noun (AN) phrases, the meaning of a given AN phrase corresponds to the

posterior distribution of LQ
1 on having heard the adjective when the noun gave rise to the prior. This was

discussed in chapter 2.6.3, where a comparison was made to the classical treatment in formal semantics

of adjective-noun composition as function application (with the adjective as a function taking the noun).

What is novel about this view of compositionality is not just that composition is treated as a probabilistic

inference, but that this inference can include pragmatic reasoning. In other words, pragmatics is included in

the compositional process of deriving the meaning of a phrase from the meaning of its parts.

The incremental listener LWORD
1 can be seen as a comparable model of compositional pragmatics, with the

stipulation that the syntactic structure which dictates the process of composition is a binary right branching

tree, i.e. a list. (These trees are right branching because the proposal for incremental pragmatics is intended to
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model the sequential process of hearing an utterance word by word, rather than the process of semantic com-

position according to a constituency parse of a sentence. The difference between the two trees is illustrated

in figures 5.1a and 5.1b. Also note that right-branching composition corresponds to incremental processing

from right to left - but similar remarks apply to a left-branching structure.)

In particular, we can model the incremental processing of a sentence with LWORD
1 by applying the model to

the first word of the sentence, and using the resulting posterior distribution when applying the model to the

second word, and so on (see chapter 4.2.1 for a related approach using SWORD
1 ).

The important point is that the notion of performing pragmatics incrementally, and using the posterior dis-

tribution at one node as the prior for another, is orthogonal to the choice of syntactic structure over which

semantic composition takes place. This means that a compositional pragmatics which respected the syntactic

structure of a sentence would work in (broadly) the same way as the case of LQ
1 and LWORD

1 discussed above.

This is an avenue of future work; the salient question is whether there are theoretical or empirical reasons to

favor a theory of pragmatics which interacts with the syntactic structure of the sentence.

5.5 Choosing alternatives

A key question in Gricean accounts of pragmatic reasoning is how the set of utterances available to a speaker

should be chosen (Katzir, 2007; Chierchia et al., 2008). This set, often referred to as the alternatives, corre-

sponds to U (or rather, U without the chosen utterance u) in the Bayesian pragmatic framework of RSA.

It is clear that varying the set of alternatives can strongly affect the model’s predictions. For instance, if I ate

all of the cookies is an alternative to I ate some of the cookies, then the latter may create the implicature of

some but not all. However, if I ate some but not all of the cookies is itself in the alternative set, this implicature

is, at least, diminished. For this reason, a principled method of deriving alternatives needs to be part of any

Gricean theory of pragmatic reasoning.

In the context of a probabilistic account of Gricean reasoning, the issue can be generalized to the question of

how we can obtain not only a set U , but also a distribution over U .

One sort of proposal views alternative generation (and pragmatic exhaustification) as a grammatical process

(Chierchia et al., 2008) where alternative sentences are produced by substituting a given word with its word-

level alternatives.

Another answer is to assume that every sentence is a possible alternative for every other sentence, with a

probability distribution which is part of the linguistic convention making up the language in question dictating

the weight given to difference utterances in U .

This is the approach taken in the application of SSNT-GP
1 to the tasks of image captioning and translation, where
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U is the set of all sequences of words. The choice of prior over U here is either supplied by a language model

or by the neurally trained S0 itself, conditioned on the image being captioned or sentence being translated.

What picture does the incrementally informative speaker SSNT-IP
1 subscribe to? On the one hand, this model

considers all possible alternatives, weighted by a learned probability distribution which is taken to represent

conventional knowledge. On the other, the alternatives are at the word level.

In this way, SSNT-IP
1 represents a kind of compromise between the two positions described above. Alternatives

are generated locally, and the process by which they are chosen is part of either the grammar, the semantics or

both. A salient question for future work is whether a model like SSNT-IP
1 is capable of making correct predic-

tions about embedded implicatures (Potts et al., 2016), which is a crucial motivation for a grammaticalized

theory of implicature.

5.6 The larger project

It seems appropriate to conclude by considering where the work discussed in this dissertation, interdisci-

plinary as it is, fits into larger research programs in the fields of linguistics, cognitive science and artificial

intelligence.

In terms of linguistic theory, RSA is a formalization of Gricean pragmatic reasoning. As discussed in chapter

(1.2.1), it presents a probabilistic model in which both the semantic and pragmatic meaning of an expression

are the belief the expression induces in a (literal/pragmatic) listener. Regarding RSA as a linguistic theory,

the aim of the research presented here was to show that it is compatible with non-trivial linguistic structure

(see chapter 3), although there is a long way to go here, exploring the interaction of pragmatics as formalized

by RSA with complex syntactic structure.

While RSA is compatible with a non-probabilistic semantics, it does not require it, and the relaxation to a

purely probabilistic S0/L0, without a truth-conditional semantics, turned out to be useful in practical appli-

cations (chapter 4). The take home message is that a probabilistic model in which language interpretation

corresponds to an inference about the state of the world is a comfortable fit both for symbolic approaches to

meaning, and statistical ones.

As a contribution to cognitive science, the Rational Speech Acts framework can be seen as an attempt to

provide a computational level theory (Bechtel, 1994) of language interpretation and production (Bergen and

Goodman, 2015a). In this regard, the extensions of RSA proposed throughout this dissertation are comparable

to recent work which combines Bayesian models of cognitive processes (such as intuitive theories of physics,

or interpretation of scenes) with deep learning techniques (Wu et al., 2015; Liu et al., 2018), in order to

harness the interpretability and explanatory utility of the former and the modeling power of the latter.
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Finally, the models proposed in this dissertation function as NLP systems in their own right, for interpreting

and generating language. This is part of a larger project to bridge the gap between theoretical insights in

linguistics and cognitive science, and real world applications, both as a means of validating those theories,

and putting them to fruitful use.



Bibliography

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning.

In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages

265–283, 2016.

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and speakers. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1173–1182. Associ-

ation for Computational Linguistics, 2016a. URL http://aclweb.org/anthology/D16-1125.

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and speakers. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1173–1182. Associ-

ation for Computational Linguistics, 2016b. URL http://aclweb.org/anthology/D16-1125.

Sheldon Jay Axler. Linear algebra done right, volume 2. Springer, 1997.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473, 2014.

Marco Baroni, Raffaela Bernardi, and Roberto Zamparelli. Frege in space: A program of compositional

distributional semantics. LiLT (Linguistic Issues in Language Technology), 9, 2014.

William Bechtel. Levels of description and explanation in cognitive science. Minds and Machines, 4(1):

1–25, 1994.

Leon Bergen and Noah D Goodman. The strategic use of noise in pragmatic reasoning. Topics in cognitive

science, 7(2):336–350, 2015a.

Leon Bergen and Noah D Goodman. The strategic use of noise in pragmatic reasoning. Topics in cognitive

science, 7(2):336–350, 2015b.

Leon Bergen, Roger Levy, and Noah D. Goodman. Pragmatic reasoning through semantic inference. Seman-

tics and Pragmatics, 9(20), 2016.

Max Black. Xii-metaphor. In Proceedings of the Aristotelian Society, volume 55, pages 273–294. The Oxford

University Press, 1955.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated corpus

for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Fredrick Jelinek, John D Lafferty,

95



BIBLIOGRAPHY 96

Robert L Mercer, and Paul S Roossin. A statistical approach to machine translation. Computational

linguistics, 16(2), 1990.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. Concreteness ratings for 40 thousand generally

known english word lemmas. Behavior research methods, 46(3):904–911, 2014.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced lstm for natural

language inference. arXiv preprint arXiv:1609.06038, 2016.

Gennaro Chierchia, Danny Fox, and Benjamin Spector. The grammatical view of scalar implicatures and the

relationship between semantics and pragmatics. Unpublished manuscript, 2008.

Noam Chomsky. Syntactic structures. Walter de Gruyter, 1957.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. A character-level decoder without explicit segmen-

tation for neural machine translation. arXiv preprint arXiv:1603.06147, 2016.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for a compositional

distributional model of meaning. arXiv preprint arXiv:1003.4394, 2010.

Reuben Cohn-Gordon and Noah Goodman. Lost in machine translation: A method to reduce meaning loss.

arXiv preprint arXiv:1902.09514, 2019.

Reuben Cohn-Gordon, Noah Goodman, and Christopher Potts. Pragmatically informative image cap-

tioning with character-level inference. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-

ume 2 (Short Papers), pages 439–443. Association for Computational Linguistics, 2018a. URL http:

//aclweb.org/anthology/N18-2070.

Reuben Cohn-Gordon, Noah D Goodman, and Christopher Potts. An incremental iterated response model of

pragmatics. arXiv preprint arXiv:1810.00367, 2018b.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in neural information

processing systems, pages 3079–3087, 2015.

Raffaello D’Andrea and Geir E Dullerud. Distributed control design for spatially interconnected systems.

IEEE Transactions on automatic control, 48(9):1478–1495, 2003.

Mark Davies. Word frequency data: Corpus of contemporary american english. Provo, UT: COCA, 2011.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Cicero Dos Santos and Maira Gatti. Deep convolutional neural networks for sentiment analysis of short

texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics:

Technical Papers, pages 69–78, 2014.

Paul E Engelhardt, Karl GD Bailey, and Fernanda Ferreira. Do speakers and listeners observe the gricean

maxim of quantity? Journal of Memory and Language, 54(4):554–573, 2006.

Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young, Cyrus Rashtchian, Julia Hockenmaier,

and David Forsyth. Every picture tells a story: Generating sentences from images. In European Conference

on Computer Vision, pages 15–29. Springer, 2010.



BIBLIOGRAPHY 97

Hartry Field. Tarski’s theory of truth. The Journal of Philosophy, 69(13):347–375, 1972.

Gregory Finley, Stephanie Farmer, and Serguei Pakhomov. What analogies reveal about word vectors and

their compositionality. In Proceedings of the 6th joint conference on lexical and computational semantics

(* SEM 2017), pages 1–11, 2017.

W Nelson Francis and Henry Kucera. Brown corpus. Department of Linguistics, Brown University, Provi-

dence, Rhode Island, 1, 1964.

Michael C. Frank and Noah D. Goodman. Predicting pragmatic reasoning in language games. Science, 336

(6084):998, 2012.

Michael Franke. Signal to Act: Game Theory in Pragmatics. ILLC Dissertation Series. Institute for Logic,

Language and Computation, University of Amsterdam, 2009.

Daniel Fried, Jacob Andreas, and Dan Klein. Unified pragmatic models for generating and following instruc-

tions. arXiv preprint arXiv:1711.04987, 2017.

Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin. A convolutional encoder model for

neural machine translation. arXiv preprint arXiv:1611.02344, 2016.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm.

1999.

Dave Golland, Percy Liang, and Dan Klein. A game-theoretic approach to generating spatial descriptions. In

Proceedings of the 2010 conference on empirical methods in natural language processing, pages 410–419.

Association for Computational Linguistics, 2010.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. Church: a

language for generative models. arXiv preprint arXiv:1206.3255, 2012.

Noah D Goodman and Andreas Stuhlmüller. Knowledge and implicature: Modeling language understanding

as social cognition. Topics in cognitive science, 5(1):173–184, 2013.

Noah D Goodman and Andreas Stuhlmüller. The design and implementation of probabilistic programming

languages, 2014.

Edward Grefenstette. Category-theoretic quantitative compositional distributional models of natural language

semantics. arXiv preprint arXiv:1311.1539, 2013.

H. Paul Grice. Logic and conversation. In Peter Cole and Jerry Morgan, editors, Syntax and Semantics,

volume 3: Speech Acts, pages 43–58. Academic Press, New York, 1975.

Daniel Gutzmann. Use-conditional meaning: Studies in multidimensional semantics, volume 6. OUP Oxford,

2015.

Robert XD Hawkins, Andreas Stuhlmüller, Judith Degen, and Noah D Goodman. Why do you ask? good

questions provoke informative answers. In CogSci. Citeseer, 2015.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Deep semantic role labeling: What works and

what’s next. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), volume 1, pages 473–483, 2017.

Theo Herrmann and Werner Deutsch. Psychologie der objektbenennung. Huber, 1976.



BIBLIOGRAPHY 98

Douglas Hofstadter and Emmanuel Sander. Surfaces and essences: Analogy as the fuel and fire of thinking.

Basic Books, 2013.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.

arXiv preprint arXiv:1904.09751, 2019.

Frederick Jelinek, John D Lafferty, and Robert L Mercer. Basic methods of probabilistic context free gram-

mars. In Speech Recognition and Understanding, pages 345–360. Springer, 1992.

Shaojie Jiang and Maarten de Rijke. Why are sequence-to-sequence models so dull? understanding the

low-diversity problem of chatbots. arXiv preprint arXiv:1809.01941, 2018.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling

sentences. arXiv preprint arXiv:1404.2188, 2014.

Justine T. Kao, Leon Bergen, and Noah D. Goodman. Formalizing the pragmatics of metaphor understanding.

In Proceedings of the 36th Annual Meeting of the Cognitive Science Society, pages 719–724, Wheat Ridge,

CO, July 2014a. Cognitive Science Society.

Justine T. Kao, Jean Y. Wu, Leon Bergen, and Noah D. Goodman. Nonliteral understanding of number words.

Proceedings of the National Academy of Sciences, 111(33):12002–12007, August 2014b.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3128–3137, 2015.

Roni Katzir. Structurally-defined alternatives. Linguistics and Philosophy, 30(6):669–690, 2007.

Walter Kintsch. Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 7(2):

257–266, 2000.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis

Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision using

crowdsourced dense image annotations. International Journal of Computer Vision, 123(1):32–73, 2017.

Ran Lahav. Against compositionality: the case of adjectives. Philosophical studies, 57(3):261–279, 1989.

George Lakoff and Mark Johnson. Metaphors we live by. Chicago, IL: University of, 1980.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. Neural

architectures for named entity recognition. arXiv preprint arXiv:1603.01360, 2016.

D Terence Langendoen, Paul Martin Postal, et al. The vastness of natural languages. Blackwell Oxford,

1984.

Daniel Lassiter and Noah D Goodman. Context, scale structure, and statistics in the interpretation of positive-

form adjectives. In Semantics and linguistic theory, volume 23, pages 587–610, 2013.

Daniel Lassiter and Noah D Goodman. Adjectival vagueness in a bayesian model of interpretation. Synthese,

194(10):3801–3836, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

David Lewis. Convention: A philosophical study. John Wiley & Sons, 1969.

Jiwei Li and Dan Jurafsky. Mutual information and diverse decoding improve neural machine translation.

arXiv preprint arXiv:1601.00372, 2016.



BIBLIOGRAPHY 99

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer

vision, pages 740–755. Springer, 2014.

Tal Linzen. Issues in evaluating semantic spaces using word analogies. arXiv preprint arXiv:1606.07736,

2016.

Yunchao Liu, Zheng Wu, Daniel Ritchie, William T Freeman, Joshua B Tenenbaum, and Jiajun Wu. Learning

to describe scenes with programs. 2018.

Ralph Loader. Notes on simply typed lambda calculus. University of Edinburgh, 1998.

Brian MacWhinney and Davida Fromm. Two approaches to metaphor detection. In LREC, pages 2501–2506,

2014.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy. Gener-

ation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 11–20, 2016.

Bill McDowell and Noah Goodman. Learning from omission. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages 619–628, 2019.
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